| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfldbas | Structured version Visualization version GIF version | ||
| Description: The base set of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21297. (Revised by GG, 31-Mar-2025.) |
| Ref | Expression |
|---|---|
| cnfldbas | ⊢ ℂ = (Base‘ℂfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11125 | . 2 ⊢ ℂ ∈ V | |
| 2 | cnfldstr 21298 | . . 3 ⊢ ℂfld Struct 〈1, ;13〉 | |
| 3 | baseid 17158 | . . 3 ⊢ Base = Slot (Base‘ndx) | |
| 4 | snsstp1 4776 | . . . 4 ⊢ {〈(Base‘ndx), ℂ〉} ⊆ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} | |
| 5 | ssun1 4137 | . . . . 5 ⊢ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ⊆ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) | |
| 6 | ssun1 4137 | . . . . . 6 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ⊆ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
| 7 | df-cnfld 21297 | . . . . . 6 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
| 8 | 6, 7 | sseqtrri 3993 | . . . . 5 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ⊆ ℂfld |
| 9 | 5, 8 | sstri 3953 | . . . 4 ⊢ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ⊆ ℂfld |
| 10 | 4, 9 | sstri 3953 | . . 3 ⊢ {〈(Base‘ndx), ℂ〉} ⊆ ℂfld |
| 11 | 2, 3, 10 | strfv 17149 | . 2 ⊢ (ℂ ∈ V → ℂ = (Base‘ℂfld)) |
| 12 | 1, 11 | ax-mp 5 | 1 ⊢ ℂ = (Base‘ℂfld) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∪ cun 3909 {csn 4585 {ctp 4589 〈cop 4591 ∘ ccom 5635 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 ℂcc 11042 1c1 11045 + caddc 11047 · cmul 11049 ≤ cle 11185 − cmin 11381 3c3 12218 ;cdc 12625 ∗ccj 15038 abscabs 15176 ndxcnx 17139 Basecbs 17155 +gcplusg 17196 .rcmulr 17197 *𝑟cstv 17198 TopSetcts 17202 lecple 17203 distcds 17205 UnifSetcunif 17206 MetOpencmopn 21286 metUnifcmetu 21287 ℂfldccnfld 21296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-cnfld 21297 |
| This theorem is referenced by: cncrng 21330 cncrngOLD 21331 cnfld0 21334 cnfld1 21335 cnfld1OLD 21336 cnfldneg 21337 cnfldplusf 21338 cnfldsub 21339 cndrng 21340 cndrngOLD 21341 cnflddiv 21342 cnflddivOLD 21343 cnfldinv 21344 cnfldmulg 21345 cnfldexp 21346 cnsrng 21347 cnsubmlem 21356 cnsubglem 21357 cnsubrglem 21358 cnsubrglemOLD 21359 cnsubdrglem 21360 absabv 21366 cnsubrg 21369 cnmgpabl 21370 cnmgpid 21371 cnmsubglem 21372 gzrngunit 21375 gsumfsum 21376 regsumfsum 21377 expmhm 21378 nn0srg 21379 rge0srg 21380 zringbas 21395 zring0 21400 zringunit 21408 expghm 21417 fermltlchr 21471 cnmsgnbas 21520 psgninv 21524 zrhpsgnmhm 21526 rebase 21548 re0g 21554 regsumsupp 21564 cnfldms 24696 cnfldnm 24699 cnfldtopn 24702 cnfldtopon 24703 clmsscn 25012 cnlmod 25073 cnstrcvs 25074 cnrbas 25075 cncvs 25078 cnncvsaddassdemo 25096 cnncvsmulassdemo 25097 cnncvsabsnegdemo 25098 cphsubrglem 25110 cphreccllem 25111 cphdivcl 25115 cphabscl 25118 cphsqrtcl2 25119 cphsqrtcl3 25120 cphipcl 25124 4cphipval2 25175 cncms 25288 cnflduss 25289 cnfldcusp 25290 resscdrg 25291 ishl2 25303 recms 25313 tdeglem3 25997 tdeglem4 25998 tdeglem2 25999 plypf1 26150 dvply2g 26225 dvply2gOLD 26226 dvply2 26227 dvnply 26229 taylfvallem 26298 taylf 26301 tayl0 26302 taylpfval 26305 taylply2 26308 taylply2OLD 26309 taylply 26310 efgh 26483 efabl 26492 efsubm 26493 jensenlem1 26930 jensenlem2 26931 jensen 26932 amgmlem 26933 amgm 26934 wilthlem2 27012 wilthlem3 27013 dchrelbas2 27181 dchrelbas3 27182 dchrn0 27194 dchrghm 27200 dchrabs 27204 sum2dchr 27218 lgseisenlem4 27322 qrngbas 27563 cchhllem 28867 cffldtocusgr 29427 cffldtocusgrOLD 29428 gsumzrsum 33042 psgnid 33069 cnmsgn0g 33118 altgnsg 33121 1fldgenq 33288 xrge0slmod 33312 znfermltl 33330 ccfldsrarelvec 33659 ccfldextdgrr 33660 constrelextdg2 33730 constrextdg2lem 33731 constrext2chnlem 33733 constrcon 33757 constrsdrg 33758 2sqr3minply 33763 cos9thpiminplylem6 33770 cos9thpiminply 33771 iistmd 33885 xrge0iifmhm 33922 xrge0pluscn 33923 zringnm 33941 cnzh 33951 rezh 33952 cnrrext 33993 esumpfinvallem 34057 cnpwstotbnd 37784 repwsmet 37821 rrnequiv 37822 cnsrexpcl 43147 fsumcnsrcl 43148 cnsrplycl 43149 rngunsnply 43151 proot1ex 43178 deg1mhm 43182 amgm2d 44180 amgm3d 44181 amgm4d 44182 binomcxplemdvbinom 44335 binomcxplemnotnn0 44338 sge0tsms 46371 cnfldsrngbas 48142 2zrng0 48225 aacllem 49783 amgmwlem 49784 amgmlemALT 49785 amgmw2d 49786 |
| Copyright terms: Public domain | W3C validator |