| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfldbas | Structured version Visualization version GIF version | ||
| Description: The base set of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21265. (Revised by GG, 31-Mar-2025.) |
| Ref | Expression |
|---|---|
| cnfldbas | ⊢ ℂ = (Base‘ℂfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11149 | . 2 ⊢ ℂ ∈ V | |
| 2 | cnfldstr 21266 | . . 3 ⊢ ℂfld Struct 〈1, ;13〉 | |
| 3 | baseid 17182 | . . 3 ⊢ Base = Slot (Base‘ndx) | |
| 4 | snsstp1 4780 | . . . 4 ⊢ {〈(Base‘ndx), ℂ〉} ⊆ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} | |
| 5 | ssun1 4141 | . . . . 5 ⊢ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ⊆ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) | |
| 6 | ssun1 4141 | . . . . . 6 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ⊆ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
| 7 | df-cnfld 21265 | . . . . . 6 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
| 8 | 6, 7 | sseqtrri 3996 | . . . . 5 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ⊆ ℂfld |
| 9 | 5, 8 | sstri 3956 | . . . 4 ⊢ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ⊆ ℂfld |
| 10 | 4, 9 | sstri 3956 | . . 3 ⊢ {〈(Base‘ndx), ℂ〉} ⊆ ℂfld |
| 11 | 2, 3, 10 | strfv 17173 | . 2 ⊢ (ℂ ∈ V → ℂ = (Base‘ℂfld)) |
| 12 | 1, 11 | ax-mp 5 | 1 ⊢ ℂ = (Base‘ℂfld) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∪ cun 3912 {csn 4589 {ctp 4593 〈cop 4595 ∘ ccom 5642 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 ℂcc 11066 1c1 11069 + caddc 11071 · cmul 11073 ≤ cle 11209 − cmin 11405 3c3 12242 ;cdc 12649 ∗ccj 15062 abscabs 15200 ndxcnx 17163 Basecbs 17179 +gcplusg 17220 .rcmulr 17221 *𝑟cstv 17222 TopSetcts 17226 lecple 17227 distcds 17229 UnifSetcunif 17230 MetOpencmopn 21254 metUnifcmetu 21255 ℂfldccnfld 21264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-starv 17235 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-cnfld 21265 |
| This theorem is referenced by: cncrng 21300 cncrngOLD 21301 cnfld0 21304 cnfld1 21305 cnfld1OLD 21306 cnfldneg 21307 cnfldplusf 21308 cnfldsub 21309 cndrng 21310 cndrngOLD 21311 cnflddiv 21312 cnflddivOLD 21313 cnfldinv 21314 cnfldmulg 21315 cnfldexp 21316 cnsrng 21317 cnsubmlem 21331 cnsubglem 21332 cnsubrglem 21333 cnsubrglemOLD 21334 cnsubdrglem 21335 absabv 21341 cnsubrg 21344 cnmgpabl 21345 cnmgpid 21346 cnmsubglem 21347 gzrngunit 21350 gsumfsum 21351 regsumfsum 21352 expmhm 21353 nn0srg 21354 rge0srg 21355 zringbas 21363 zring0 21368 zringunit 21376 expghm 21385 fermltlchr 21439 cnmsgnbas 21487 psgninv 21491 zrhpsgnmhm 21493 rebase 21515 re0g 21521 regsumsupp 21531 cnfldms 24663 cnfldnm 24666 cnfldtopn 24669 cnfldtopon 24670 clmsscn 24979 cnlmod 25040 cnstrcvs 25041 cnrbas 25042 cncvs 25045 cnncvsaddassdemo 25063 cnncvsmulassdemo 25064 cnncvsabsnegdemo 25065 cphsubrglem 25077 cphreccllem 25078 cphdivcl 25082 cphabscl 25085 cphsqrtcl2 25086 cphsqrtcl3 25087 cphipcl 25091 4cphipval2 25142 cncms 25255 cnflduss 25256 cnfldcusp 25257 resscdrg 25258 ishl2 25270 recms 25280 tdeglem3 25964 tdeglem4 25965 tdeglem2 25966 plypf1 26117 dvply2g 26192 dvply2gOLD 26193 dvply2 26194 dvnply 26196 taylfvallem 26265 taylf 26268 tayl0 26269 taylpfval 26272 taylply2 26275 taylply2OLD 26276 taylply 26277 efgh 26450 efabl 26459 efsubm 26460 jensenlem1 26897 jensenlem2 26898 jensen 26899 amgmlem 26900 amgm 26901 wilthlem2 26979 wilthlem3 26980 dchrelbas2 27148 dchrelbas3 27149 dchrn0 27161 dchrghm 27167 dchrabs 27171 sum2dchr 27185 lgseisenlem4 27289 qrngbas 27530 cchhllem 28814 cffldtocusgr 29374 cffldtocusgrOLD 29375 gsumzrsum 32999 psgnid 33054 cnmsgn0g 33103 altgnsg 33106 1fldgenq 33272 xrge0slmod 33319 znfermltl 33337 ccfldsrarelvec 33666 ccfldextdgrr 33667 constrelextdg2 33737 constrextdg2lem 33738 constrext2chnlem 33740 constrcon 33764 constrsdrg 33765 2sqr3minply 33770 cos9thpiminplylem6 33777 cos9thpiminply 33778 iistmd 33892 xrge0iifmhm 33929 xrge0pluscn 33930 zringnm 33948 cnzh 33958 rezh 33959 cnrrext 34000 esumpfinvallem 34064 cnpwstotbnd 37791 repwsmet 37828 rrnequiv 37829 cnsrexpcl 43154 fsumcnsrcl 43155 cnsrplycl 43156 rngunsnply 43158 proot1ex 43185 deg1mhm 43189 amgm2d 44187 amgm3d 44188 amgm4d 44189 binomcxplemdvbinom 44342 binomcxplemnotnn0 44345 sge0tsms 46378 cnfldsrngbas 48149 2zrng0 48232 aacllem 49790 amgmwlem 49791 amgmlemALT 49792 amgmw2d 49793 |
| Copyright terms: Public domain | W3C validator |