![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnfldbas | Structured version Visualization version GIF version |
Description: The base set of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
Ref | Expression |
---|---|
cnfldbas | ⊢ ℂ = (Base‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 11193 | . 2 ⊢ ℂ ∈ V | |
2 | cnfldstr 20952 | . . 3 ⊢ ℂfld Struct ⟨1, ;13⟩ | |
3 | baseid 17149 | . . 3 ⊢ Base = Slot (Base‘ndx) | |
4 | snsstp1 4819 | . . . 4 ⊢ {⟨(Base‘ndx), ℂ⟩} ⊆ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} | |
5 | ssun1 4172 | . . . . 5 ⊢ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ⊆ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) | |
6 | ssun1 4172 | . . . . . 6 ⊢ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ⊆ (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) | |
7 | df-cnfld 20951 | . . . . . 6 ⊢ ℂfld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) | |
8 | 6, 7 | sseqtrri 4019 | . . . . 5 ⊢ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ⊆ ℂfld |
9 | 5, 8 | sstri 3991 | . . . 4 ⊢ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ⊆ ℂfld |
10 | 4, 9 | sstri 3991 | . . 3 ⊢ {⟨(Base‘ndx), ℂ⟩} ⊆ ℂfld |
11 | 2, 3, 10 | strfv 17139 | . 2 ⊢ (ℂ ∈ V → ℂ = (Base‘ℂfld)) |
12 | 1, 11 | ax-mp 5 | 1 ⊢ ℂ = (Base‘ℂfld) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∪ cun 3946 {csn 4628 {ctp 4632 ⟨cop 4634 ∘ ccom 5680 ‘cfv 6543 ℂcc 11110 1c1 11113 + caddc 11115 · cmul 11117 ≤ cle 11251 − cmin 11446 3c3 12270 ;cdc 12679 ∗ccj 15045 abscabs 15183 ndxcnx 17128 Basecbs 17146 +gcplusg 17199 .rcmulr 17200 *𝑟cstv 17201 TopSetcts 17205 lecple 17206 distcds 17208 UnifSetcunif 17209 MetOpencmopn 20940 metUnifcmetu 20941 ℂfldccnfld 20950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 df-sub 11448 df-neg 11449 df-nn 12215 df-2 12277 df-3 12278 df-4 12279 df-5 12280 df-6 12281 df-7 12282 df-8 12283 df-9 12284 df-n0 12475 df-z 12561 df-dec 12680 df-uz 12825 df-fz 13487 df-struct 17082 df-slot 17117 df-ndx 17129 df-base 17147 df-plusg 17212 df-mulr 17213 df-starv 17214 df-tset 17218 df-ple 17219 df-ds 17221 df-unif 17222 df-cnfld 20951 |
This theorem is referenced by: cncrng 20972 cnfld0 20975 cnfld1 20976 cnfldneg 20977 cnfldplusf 20978 cnfldsub 20979 cndrng 20980 cnflddiv 20981 cnfldinv 20982 cnfldmulg 20983 cnfldexp 20984 cnsrng 20985 cnsubmlem 20999 cnsubglem 21000 cnsubrglem 21001 cnsubdrglem 21002 absabv 21008 cnsubrg 21011 cnmgpabl 21012 cnmgpid 21013 cnmsubglem 21014 gzrngunit 21017 gsumfsum 21018 regsumfsum 21019 expmhm 21020 nn0srg 21021 rge0srg 21022 zringbas 21029 zring0 21034 zringunit 21042 expghm 21051 cnmsgnbas 21137 psgninv 21141 zrhpsgnmhm 21143 rebase 21165 re0g 21171 regsumsupp 21181 cnfldms 24299 cnfldnm 24302 cnfldtopn 24305 cnfldtopon 24306 clmsscn 24602 cnlmod 24663 cnstrcvs 24664 cnrbas 24665 cncvs 24668 cnncvsaddassdemo 24687 cnncvsmulassdemo 24688 cnncvsabsnegdemo 24689 cphsubrglem 24701 cphreccllem 24702 cphdivcl 24706 cphabscl 24709 cphsqrtcl2 24710 cphsqrtcl3 24711 cphipcl 24715 4cphipval2 24766 cncms 24879 cnflduss 24880 cnfldcusp 24881 resscdrg 24882 ishl2 24894 recms 24904 tdeglem3 25582 tdeglem3OLD 25583 tdeglem4 25584 tdeglem4OLD 25585 tdeglem2 25586 plypf1 25733 dvply2g 25805 dvply2 25806 dvnply 25808 taylfvallem 25877 taylf 25880 tayl0 25881 taylpfval 25884 taylply2 25887 taylply 25888 efgh 26057 efabl 26066 efsubm 26067 jensenlem1 26498 jensenlem2 26499 jensen 26500 amgmlem 26501 amgm 26502 wilthlem2 26580 wilthlem3 26581 dchrelbas2 26747 dchrelbas3 26748 dchrn0 26760 dchrghm 26766 dchrabs 26770 sum2dchr 26784 lgseisenlem4 26888 qrngbas 27129 cchhllem 28182 cchhllemOLD 28183 cffldtocusgr 28742 psgnid 32297 cnmsgn0g 32346 altgnsg 32349 1fldgenq 32453 xrge0slmod 32504 fermltlchr 32523 znfermltl 32524 ccfldsrarelvec 32805 ccfldextdgrr 32806 iistmd 32951 xrge0iifmhm 32988 xrge0pluscn 32989 zringnm 33007 cnzh 33019 rezh 33020 cnrrext 33059 esumpfinvallem 33141 gg-cffldtocusgr 35268 gg-cncrng 35269 gg-cnfld1 35270 cnpwstotbnd 36751 repwsmet 36788 rrnequiv 36789 cnsrexpcl 41989 fsumcnsrcl 41990 cnsrplycl 41991 rngunsnply 41997 proot1ex 42025 deg1mhm 42031 amgm2d 43032 amgm3d 43033 amgm4d 43034 binomcxplemdvbinom 43194 binomcxplemnotnn0 43197 sge0tsms 45175 cnfldsrngbas 46618 2zrng0 46915 aacllem 47926 amgmwlem 47927 amgmlemALT 47928 amgmw2d 47929 |
Copyright terms: Public domain | W3C validator |