![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnfldbas | Structured version Visualization version GIF version |
Description: The base set of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21382. (Revised by GG, 31-Mar-2025.) |
Ref | Expression |
---|---|
cnfldbas | ⊢ ℂ = (Base‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 11233 | . 2 ⊢ ℂ ∈ V | |
2 | cnfldstr 21383 | . . 3 ⊢ ℂfld Struct 〈1, ;13〉 | |
3 | baseid 17247 | . . 3 ⊢ Base = Slot (Base‘ndx) | |
4 | snsstp1 4820 | . . . 4 ⊢ {〈(Base‘ndx), ℂ〉} ⊆ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} | |
5 | ssun1 4187 | . . . . 5 ⊢ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ⊆ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) | |
6 | ssun1 4187 | . . . . . 6 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ⊆ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
7 | df-cnfld 21382 | . . . . . 6 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
8 | 6, 7 | sseqtrri 4032 | . . . . 5 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ⊆ ℂfld |
9 | 5, 8 | sstri 4004 | . . . 4 ⊢ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ⊆ ℂfld |
10 | 4, 9 | sstri 4004 | . . 3 ⊢ {〈(Base‘ndx), ℂ〉} ⊆ ℂfld |
11 | 2, 3, 10 | strfv 17237 | . 2 ⊢ (ℂ ∈ V → ℂ = (Base‘ℂfld)) |
12 | 1, 11 | ax-mp 5 | 1 ⊢ ℂ = (Base‘ℂfld) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ∈ wcel 2105 Vcvv 3477 ∪ cun 3960 {csn 4630 {ctp 4634 〈cop 4636 ∘ ccom 5692 ‘cfv 6562 (class class class)co 7430 ∈ cmpo 7432 ℂcc 11150 1c1 11153 + caddc 11155 · cmul 11157 ≤ cle 11293 − cmin 11489 3c3 12319 ;cdc 12730 ∗ccj 15131 abscabs 15269 ndxcnx 17226 Basecbs 17244 +gcplusg 17297 .rcmulr 17298 *𝑟cstv 17299 TopSetcts 17303 lecple 17304 distcds 17306 UnifSetcunif 17307 MetOpencmopn 21371 metUnifcmetu 21372 ℂfldccnfld 21381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-fz 13544 df-struct 17180 df-slot 17215 df-ndx 17227 df-base 17245 df-plusg 17310 df-mulr 17311 df-starv 17312 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-cnfld 21382 |
This theorem is referenced by: cncrng 21418 cncrngOLD 21419 cnfld0 21422 cnfld1 21423 cnfld1OLD 21424 cnfldneg 21425 cnfldplusf 21426 cnfldsub 21427 cndrng 21428 cndrngOLD 21429 cnflddiv 21430 cnflddivOLD 21431 cnfldinv 21432 cnfldmulg 21433 cnfldexp 21434 cnsrng 21435 cnsubmlem 21449 cnsubglem 21450 cnsubrglem 21451 cnsubrglemOLD 21452 cnsubdrglem 21453 absabv 21459 cnsubrg 21462 cnmgpabl 21463 cnmgpid 21464 cnmsubglem 21465 gzrngunit 21468 gsumfsum 21469 regsumfsum 21470 expmhm 21471 nn0srg 21472 rge0srg 21473 zringbas 21481 zring0 21486 zringunit 21494 expghm 21503 fermltlchr 21561 cnmsgnbas 21613 psgninv 21617 zrhpsgnmhm 21619 rebase 21641 re0g 21647 regsumsupp 21657 cnfldms 24811 cnfldnm 24814 cnfldtopn 24817 cnfldtopon 24818 clmsscn 25125 cnlmod 25186 cnstrcvs 25187 cnrbas 25188 cncvs 25191 cnncvsaddassdemo 25210 cnncvsmulassdemo 25211 cnncvsabsnegdemo 25212 cphsubrglem 25224 cphreccllem 25225 cphdivcl 25229 cphabscl 25232 cphsqrtcl2 25233 cphsqrtcl3 25234 cphipcl 25238 4cphipval2 25289 cncms 25402 cnflduss 25403 cnfldcusp 25404 resscdrg 25405 ishl2 25417 recms 25427 tdeglem3 26112 tdeglem4 26113 tdeglem2 26114 plypf1 26265 dvply2g 26340 dvply2gOLD 26341 dvply2 26342 dvnply 26344 taylfvallem 26413 taylf 26416 tayl0 26417 taylpfval 26420 taylply2 26423 taylply2OLD 26424 taylply 26425 efgh 26597 efabl 26606 efsubm 26607 jensenlem1 27044 jensenlem2 27045 jensen 27046 amgmlem 27047 amgm 27048 wilthlem2 27126 wilthlem3 27127 dchrelbas2 27295 dchrelbas3 27296 dchrn0 27308 dchrghm 27314 dchrabs 27318 sum2dchr 27332 lgseisenlem4 27436 qrngbas 27677 cchhllem 28915 cchhllemOLD 28916 cffldtocusgr 29478 cffldtocusgrOLD 29479 gsumzrsum 33044 psgnid 33099 cnmsgn0g 33148 altgnsg 33151 1fldgenq 33303 xrge0slmod 33355 znfermltl 33373 ccfldsrarelvec 33695 ccfldextdgrr 33696 constrelextdg2 33751 2sqr3minply 33752 iistmd 33862 xrge0iifmhm 33899 xrge0pluscn 33900 zringnm 33918 cnzh 33930 rezh 33931 cnrrext 33972 esumpfinvallem 34054 cnpwstotbnd 37783 repwsmet 37820 rrnequiv 37821 cnsrexpcl 43153 fsumcnsrcl 43154 cnsrplycl 43155 rngunsnply 43157 proot1ex 43184 deg1mhm 43188 amgm2d 44187 amgm3d 44188 amgm4d 44189 binomcxplemdvbinom 44348 binomcxplemnotnn0 44351 sge0tsms 46335 cnfldsrngbas 48004 2zrng0 48087 aacllem 49031 amgmwlem 49032 amgmlemALT 49033 amgmw2d 49034 |
Copyright terms: Public domain | W3C validator |