| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfldbas | Structured version Visualization version GIF version | ||
| Description: The base set of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21365. (Revised by GG, 31-Mar-2025.) |
| Ref | Expression |
|---|---|
| cnfldbas | ⊢ ℂ = (Base‘ℂfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11236 | . 2 ⊢ ℂ ∈ V | |
| 2 | cnfldstr 21366 | . . 3 ⊢ ℂfld Struct 〈1, ;13〉 | |
| 3 | baseid 17250 | . . 3 ⊢ Base = Slot (Base‘ndx) | |
| 4 | snsstp1 4816 | . . . 4 ⊢ {〈(Base‘ndx), ℂ〉} ⊆ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} | |
| 5 | ssun1 4178 | . . . . 5 ⊢ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ⊆ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) | |
| 6 | ssun1 4178 | . . . . . 6 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ⊆ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
| 7 | df-cnfld 21365 | . . . . . 6 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
| 8 | 6, 7 | sseqtrri 4033 | . . . . 5 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ⊆ ℂfld |
| 9 | 5, 8 | sstri 3993 | . . . 4 ⊢ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ⊆ ℂfld |
| 10 | 4, 9 | sstri 3993 | . . 3 ⊢ {〈(Base‘ndx), ℂ〉} ⊆ ℂfld |
| 11 | 2, 3, 10 | strfv 17240 | . 2 ⊢ (ℂ ∈ V → ℂ = (Base‘ℂfld)) |
| 12 | 1, 11 | ax-mp 5 | 1 ⊢ ℂ = (Base‘ℂfld) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 Vcvv 3480 ∪ cun 3949 {csn 4626 {ctp 4630 〈cop 4632 ∘ ccom 5689 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 ℂcc 11153 1c1 11156 + caddc 11158 · cmul 11160 ≤ cle 11296 − cmin 11492 3c3 12322 ;cdc 12733 ∗ccj 15135 abscabs 15273 ndxcnx 17230 Basecbs 17247 +gcplusg 17297 .rcmulr 17298 *𝑟cstv 17299 TopSetcts 17303 lecple 17304 distcds 17306 UnifSetcunif 17307 MetOpencmopn 21354 metUnifcmetu 21355 ℂfldccnfld 21364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-struct 17184 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-mulr 17311 df-starv 17312 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-cnfld 21365 |
| This theorem is referenced by: cncrng 21401 cncrngOLD 21402 cnfld0 21405 cnfld1 21406 cnfld1OLD 21407 cnfldneg 21408 cnfldplusf 21409 cnfldsub 21410 cndrng 21411 cndrngOLD 21412 cnflddiv 21413 cnflddivOLD 21414 cnfldinv 21415 cnfldmulg 21416 cnfldexp 21417 cnsrng 21418 cnsubmlem 21432 cnsubglem 21433 cnsubrglem 21434 cnsubrglemOLD 21435 cnsubdrglem 21436 absabv 21442 cnsubrg 21445 cnmgpabl 21446 cnmgpid 21447 cnmsubglem 21448 gzrngunit 21451 gsumfsum 21452 regsumfsum 21453 expmhm 21454 nn0srg 21455 rge0srg 21456 zringbas 21464 zring0 21469 zringunit 21477 expghm 21486 fermltlchr 21544 cnmsgnbas 21596 psgninv 21600 zrhpsgnmhm 21602 rebase 21624 re0g 21630 regsumsupp 21640 cnfldms 24796 cnfldnm 24799 cnfldtopn 24802 cnfldtopon 24803 clmsscn 25112 cnlmod 25173 cnstrcvs 25174 cnrbas 25175 cncvs 25178 cnncvsaddassdemo 25197 cnncvsmulassdemo 25198 cnncvsabsnegdemo 25199 cphsubrglem 25211 cphreccllem 25212 cphdivcl 25216 cphabscl 25219 cphsqrtcl2 25220 cphsqrtcl3 25221 cphipcl 25225 4cphipval2 25276 cncms 25389 cnflduss 25390 cnfldcusp 25391 resscdrg 25392 ishl2 25404 recms 25414 tdeglem3 26098 tdeglem4 26099 tdeglem2 26100 plypf1 26251 dvply2g 26326 dvply2gOLD 26327 dvply2 26328 dvnply 26330 taylfvallem 26399 taylf 26402 tayl0 26403 taylpfval 26406 taylply2 26409 taylply2OLD 26410 taylply 26411 efgh 26583 efabl 26592 efsubm 26593 jensenlem1 27030 jensenlem2 27031 jensen 27032 amgmlem 27033 amgm 27034 wilthlem2 27112 wilthlem3 27113 dchrelbas2 27281 dchrelbas3 27282 dchrn0 27294 dchrghm 27300 dchrabs 27304 sum2dchr 27318 lgseisenlem4 27422 qrngbas 27663 cchhllem 28901 cchhllemOLD 28902 cffldtocusgr 29464 cffldtocusgrOLD 29465 gsumzrsum 33062 psgnid 33117 cnmsgn0g 33166 altgnsg 33169 1fldgenq 33324 xrge0slmod 33376 znfermltl 33394 ccfldsrarelvec 33721 ccfldextdgrr 33722 constrelextdg2 33788 constrextdg2lem 33789 2sqr3minply 33791 iistmd 33901 xrge0iifmhm 33938 xrge0pluscn 33939 zringnm 33957 cnzh 33969 rezh 33970 cnrrext 34011 esumpfinvallem 34075 cnpwstotbnd 37804 repwsmet 37841 rrnequiv 37842 cnsrexpcl 43177 fsumcnsrcl 43178 cnsrplycl 43179 rngunsnply 43181 proot1ex 43208 deg1mhm 43212 amgm2d 44211 amgm3d 44212 amgm4d 44213 binomcxplemdvbinom 44372 binomcxplemnotnn0 44375 sge0tsms 46395 cnfldsrngbas 48077 2zrng0 48160 aacllem 49320 amgmwlem 49321 amgmlemALT 49322 amgmw2d 49323 |
| Copyright terms: Public domain | W3C validator |