| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfldbas | Structured version Visualization version GIF version | ||
| Description: The base set of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21292. (Revised by GG, 31-Mar-2025.) |
| Ref | Expression |
|---|---|
| cnfldbas | ⊢ ℂ = (Base‘ℂfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11087 | . 2 ⊢ ℂ ∈ V | |
| 2 | cnfldstr 21293 | . . 3 ⊢ ℂfld Struct 〈1, ;13〉 | |
| 3 | baseid 17123 | . . 3 ⊢ Base = Slot (Base‘ndx) | |
| 4 | snsstp1 4765 | . . . 4 ⊢ {〈(Base‘ndx), ℂ〉} ⊆ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} | |
| 5 | ssun1 4125 | . . . . 5 ⊢ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ⊆ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) | |
| 6 | ssun1 4125 | . . . . . 6 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ⊆ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
| 7 | df-cnfld 21292 | . . . . . 6 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
| 8 | 6, 7 | sseqtrri 3979 | . . . . 5 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ⊆ ℂfld |
| 9 | 5, 8 | sstri 3939 | . . . 4 ⊢ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ⊆ ℂfld |
| 10 | 4, 9 | sstri 3939 | . . 3 ⊢ {〈(Base‘ndx), ℂ〉} ⊆ ℂfld |
| 11 | 2, 3, 10 | strfv 17114 | . 2 ⊢ (ℂ ∈ V → ℂ = (Base‘ℂfld)) |
| 12 | 1, 11 | ax-mp 5 | 1 ⊢ ℂ = (Base‘ℂfld) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cun 3895 {csn 4573 {ctp 4577 〈cop 4579 ∘ ccom 5618 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ℂcc 11004 1c1 11007 + caddc 11009 · cmul 11011 ≤ cle 11147 − cmin 11344 3c3 12181 ;cdc 12588 ∗ccj 15003 abscabs 15141 ndxcnx 17104 Basecbs 17120 +gcplusg 17161 .rcmulr 17162 *𝑟cstv 17163 TopSetcts 17167 lecple 17168 distcds 17170 UnifSetcunif 17171 MetOpencmopn 21281 metUnifcmetu 21282 ℂfldccnfld 21291 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-cnfld 21292 |
| This theorem is referenced by: cncrng 21325 cncrngOLD 21326 cnfld0 21329 cnfld1 21330 cnfld1OLD 21331 cnfldneg 21332 cnfldplusf 21333 cnfldsub 21334 cndrng 21335 cndrngOLD 21336 cnflddiv 21337 cnflddivOLD 21338 cnfldinv 21339 cnfldmulg 21340 cnfldexp 21341 cnsrng 21342 cnsubmlem 21351 cnsubglem 21352 cnsubrglem 21353 cnsubrglemOLD 21354 cnsubdrglem 21355 absabv 21361 cnsubrg 21364 cnmgpabl 21365 cnmgpid 21366 cnmsubglem 21367 gzrngunit 21370 gsumfsum 21371 regsumfsum 21372 expmhm 21373 nn0srg 21374 rge0srg 21375 zringbas 21390 zring0 21395 zringunit 21403 expghm 21412 fermltlchr 21466 cnmsgnbas 21515 psgninv 21519 zrhpsgnmhm 21521 rebase 21543 re0g 21549 regsumsupp 21559 cnfldms 24690 cnfldnm 24693 cnfldtopn 24696 cnfldtopon 24697 clmsscn 25006 cnlmod 25067 cnstrcvs 25068 cnrbas 25069 cncvs 25072 cnncvsaddassdemo 25090 cnncvsmulassdemo 25091 cnncvsabsnegdemo 25092 cphsubrglem 25104 cphreccllem 25105 cphdivcl 25109 cphabscl 25112 cphsqrtcl2 25113 cphsqrtcl3 25114 cphipcl 25118 4cphipval2 25169 cncms 25282 cnflduss 25283 cnfldcusp 25284 resscdrg 25285 ishl2 25297 recms 25307 tdeglem3 25991 tdeglem4 25992 tdeglem2 25993 plypf1 26144 dvply2g 26219 dvply2gOLD 26220 dvply2 26221 dvnply 26223 taylfvallem 26292 taylf 26295 tayl0 26296 taylpfval 26299 taylply2 26302 taylply2OLD 26303 taylply 26304 efgh 26477 efabl 26486 efsubm 26487 jensenlem1 26924 jensenlem2 26925 jensen 26926 amgmlem 26927 amgm 26928 wilthlem2 27006 wilthlem3 27007 dchrelbas2 27175 dchrelbas3 27176 dchrn0 27188 dchrghm 27194 dchrabs 27198 sum2dchr 27212 lgseisenlem4 27316 qrngbas 27557 cchhllem 28865 cffldtocusgr 29425 cffldtocusgrOLD 29426 gsumzrsum 33039 psgnid 33066 cnmsgn0g 33115 altgnsg 33118 1fldgenq 33288 gsumind 33310 xrge0slmod 33313 znfermltl 33331 ccfldsrarelvec 33684 ccfldextdgrr 33685 constrelextdg2 33760 constrextdg2lem 33761 constrext2chnlem 33763 constrcon 33787 constrsdrg 33788 2sqr3minply 33793 cos9thpiminplylem6 33800 cos9thpiminply 33801 iistmd 33915 xrge0iifmhm 33952 xrge0pluscn 33953 zringnm 33971 cnzh 33981 rezh 33982 cnrrext 34023 esumpfinvallem 34087 cnpwstotbnd 37847 repwsmet 37884 rrnequiv 37885 cnsrexpcl 43268 fsumcnsrcl 43269 cnsrplycl 43270 rngunsnply 43272 proot1ex 43299 deg1mhm 43303 amgm2d 44301 amgm3d 44302 amgm4d 44303 binomcxplemdvbinom 44456 binomcxplemnotnn0 44459 sge0tsms 46488 cnfldsrngbas 48271 2zrng0 48354 aacllem 49912 amgmwlem 49913 amgmlemALT 49914 amgmw2d 49915 |
| Copyright terms: Public domain | W3C validator |