![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnfldbas | Structured version Visualization version GIF version |
Description: The base set of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
Ref | Expression |
---|---|
cnfldbas | ⊢ ℂ = (Base‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 10464 | . 2 ⊢ ℂ ∈ V | |
2 | cnfldstr 20229 | . . 3 ⊢ ℂfld Struct 〈1, ;13〉 | |
3 | baseid 16372 | . . 3 ⊢ Base = Slot (Base‘ndx) | |
4 | snsstp1 4656 | . . . 4 ⊢ {〈(Base‘ndx), ℂ〉} ⊆ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} | |
5 | ssun1 4069 | . . . . 5 ⊢ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⊆ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) | |
6 | ssun1 4069 | . . . . . 6 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ⊆ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
7 | df-cnfld 20228 | . . . . . 6 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
8 | 6, 7 | sseqtr4i 3925 | . . . . 5 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ⊆ ℂfld |
9 | 5, 8 | sstri 3898 | . . . 4 ⊢ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⊆ ℂfld |
10 | 4, 9 | sstri 3898 | . . 3 ⊢ {〈(Base‘ndx), ℂ〉} ⊆ ℂfld |
11 | 2, 3, 10 | strfv 16360 | . 2 ⊢ (ℂ ∈ V → ℂ = (Base‘ℂfld)) |
12 | 1, 11 | ax-mp 5 | 1 ⊢ ℂ = (Base‘ℂfld) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1522 ∈ wcel 2081 Vcvv 3437 ∪ cun 3857 {csn 4472 {ctp 4476 〈cop 4478 ∘ ccom 5447 ‘cfv 6225 ℂcc 10381 1c1 10384 + caddc 10386 · cmul 10388 ≤ cle 10522 − cmin 10717 3c3 11541 ;cdc 11947 ∗ccj 14289 abscabs 14427 ndxcnx 16309 Basecbs 16312 +gcplusg 16394 .rcmulr 16395 *𝑟cstv 16396 TopSetcts 16400 lecple 16401 distcds 16403 UnifSetcunif 16404 MetOpencmopn 20217 metUnifcmetu 20218 ℂfldccnfld 20227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-1st 7545 df-2nd 7546 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-oadd 7957 df-er 8139 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-nn 11487 df-2 11548 df-3 11549 df-4 11550 df-5 11551 df-6 11552 df-7 11553 df-8 11554 df-9 11555 df-n0 11746 df-z 11830 df-dec 11948 df-uz 12094 df-fz 12743 df-struct 16314 df-ndx 16315 df-slot 16316 df-base 16318 df-plusg 16407 df-mulr 16408 df-starv 16409 df-tset 16413 df-ple 16414 df-ds 16416 df-unif 16417 df-cnfld 20228 |
This theorem is referenced by: cncrng 20248 cnfld0 20251 cnfld1 20252 cnfldneg 20253 cnfldplusf 20254 cnfldsub 20255 cndrng 20256 cnflddiv 20257 cnfldinv 20258 cnfldmulg 20259 cnfldexp 20260 cnsrng 20261 cnsubmlem 20275 cnsubglem 20276 cnsubrglem 20277 cnsubdrglem 20278 absabv 20284 cnsubrg 20287 cnmgpabl 20288 cnmgpid 20289 cnmsubglem 20290 gzrngunit 20293 gsumfsum 20294 regsumfsum 20295 expmhm 20296 nn0srg 20297 rge0srg 20298 zringbas 20305 zring0 20309 zringunit 20317 expghm 20325 cnmsgnbas 20404 psgninv 20408 zrhpsgnmhm 20410 rebase 20432 re0g 20438 regsumsupp 20448 cnfldms 23067 cnfldnm 23070 cnfldtopn 23073 cnfldtopon 23074 clmsscn 23366 cnlmod 23427 cnstrcvs 23428 cnrbas 23429 cncvs 23432 cnncvsaddassdemo 23450 cnncvsmulassdemo 23451 cnncvsabsnegdemo 23452 cphsubrglem 23464 cphreccllem 23465 cphdivcl 23469 cphabscl 23472 cphsqrtcl2 23473 cphsqrtcl3 23474 cphipcl 23478 4cphipval2 23528 cncms 23641 cnflduss 23642 cnfldcusp 23643 resscdrg 23644 ishl2 23656 recms 23666 tdeglem3 24336 tdeglem4 24337 tdeglem2 24338 plypf1 24485 dvply2g 24557 dvply2 24558 dvnply 24560 taylfvallem 24629 taylf 24632 tayl0 24633 taylpfval 24636 taylply2 24639 taylply 24640 efgh 24806 efabl 24815 efsubm 24816 jensenlem1 25246 jensenlem2 25247 jensen 25248 amgmlem 25249 amgm 25250 wilthlem2 25328 wilthlem3 25329 dchrelbas2 25495 dchrelbas3 25496 dchrn0 25508 dchrghm 25514 dchrabs 25518 sum2dchr 25532 lgseisenlem4 25636 qrngbas 25877 cchhllem 26356 cffldtocusgr 26912 cnmsgn0g 30425 psgnid 30427 altgnsg 30429 xrge0slmod 30571 ccfldsrarelvec 30660 ccfldextdgrr 30661 iistmd 30762 xrge0iifmhm 30799 xrge0pluscn 30800 zringnm 30818 cnzh 30828 rezh 30829 cnrrext 30868 esumpfinvallem 30950 cnpwstotbnd 34607 repwsmet 34644 rrnequiv 34645 cnsrexpcl 39250 fsumcnsrcl 39251 cnsrplycl 39252 rngunsnply 39258 proot1ex 39286 deg1mhm 39292 amgm2d 40037 amgm3d 40038 amgm4d 40039 binomcxplemdvbinom 40223 binomcxplemnotnn0 40226 sge0tsms 42204 cnfldsrngbas 43518 2zrng0 43687 aacllem 44382 amgmwlem 44383 amgmlemALT 44384 amgmw2d 44385 |
Copyright terms: Public domain | W3C validator |