| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfldbas | Structured version Visualization version GIF version | ||
| Description: The base set of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21272. (Revised by GG, 31-Mar-2025.) |
| Ref | Expression |
|---|---|
| cnfldbas | ⊢ ℂ = (Base‘ℂfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11156 | . 2 ⊢ ℂ ∈ V | |
| 2 | cnfldstr 21273 | . . 3 ⊢ ℂfld Struct 〈1, ;13〉 | |
| 3 | baseid 17189 | . . 3 ⊢ Base = Slot (Base‘ndx) | |
| 4 | snsstp1 4783 | . . . 4 ⊢ {〈(Base‘ndx), ℂ〉} ⊆ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} | |
| 5 | ssun1 4144 | . . . . 5 ⊢ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ⊆ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) | |
| 6 | ssun1 4144 | . . . . . 6 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ⊆ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
| 7 | df-cnfld 21272 | . . . . . 6 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
| 8 | 6, 7 | sseqtrri 3999 | . . . . 5 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ⊆ ℂfld |
| 9 | 5, 8 | sstri 3959 | . . . 4 ⊢ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ⊆ ℂfld |
| 10 | 4, 9 | sstri 3959 | . . 3 ⊢ {〈(Base‘ndx), ℂ〉} ⊆ ℂfld |
| 11 | 2, 3, 10 | strfv 17180 | . 2 ⊢ (ℂ ∈ V → ℂ = (Base‘ℂfld)) |
| 12 | 1, 11 | ax-mp 5 | 1 ⊢ ℂ = (Base‘ℂfld) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∪ cun 3915 {csn 4592 {ctp 4596 〈cop 4598 ∘ ccom 5645 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 ℂcc 11073 1c1 11076 + caddc 11078 · cmul 11080 ≤ cle 11216 − cmin 11412 3c3 12249 ;cdc 12656 ∗ccj 15069 abscabs 15207 ndxcnx 17170 Basecbs 17186 +gcplusg 17227 .rcmulr 17228 *𝑟cstv 17229 TopSetcts 17233 lecple 17234 distcds 17236 UnifSetcunif 17237 MetOpencmopn 21261 metUnifcmetu 21262 ℂfldccnfld 21271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-mulr 17241 df-starv 17242 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-cnfld 21272 |
| This theorem is referenced by: cncrng 21307 cncrngOLD 21308 cnfld0 21311 cnfld1 21312 cnfld1OLD 21313 cnfldneg 21314 cnfldplusf 21315 cnfldsub 21316 cndrng 21317 cndrngOLD 21318 cnflddiv 21319 cnflddivOLD 21320 cnfldinv 21321 cnfldmulg 21322 cnfldexp 21323 cnsrng 21324 cnsubmlem 21338 cnsubglem 21339 cnsubrglem 21340 cnsubrglemOLD 21341 cnsubdrglem 21342 absabv 21348 cnsubrg 21351 cnmgpabl 21352 cnmgpid 21353 cnmsubglem 21354 gzrngunit 21357 gsumfsum 21358 regsumfsum 21359 expmhm 21360 nn0srg 21361 rge0srg 21362 zringbas 21370 zring0 21375 zringunit 21383 expghm 21392 fermltlchr 21446 cnmsgnbas 21494 psgninv 21498 zrhpsgnmhm 21500 rebase 21522 re0g 21528 regsumsupp 21538 cnfldms 24670 cnfldnm 24673 cnfldtopn 24676 cnfldtopon 24677 clmsscn 24986 cnlmod 25047 cnstrcvs 25048 cnrbas 25049 cncvs 25052 cnncvsaddassdemo 25070 cnncvsmulassdemo 25071 cnncvsabsnegdemo 25072 cphsubrglem 25084 cphreccllem 25085 cphdivcl 25089 cphabscl 25092 cphsqrtcl2 25093 cphsqrtcl3 25094 cphipcl 25098 4cphipval2 25149 cncms 25262 cnflduss 25263 cnfldcusp 25264 resscdrg 25265 ishl2 25277 recms 25287 tdeglem3 25971 tdeglem4 25972 tdeglem2 25973 plypf1 26124 dvply2g 26199 dvply2gOLD 26200 dvply2 26201 dvnply 26203 taylfvallem 26272 taylf 26275 tayl0 26276 taylpfval 26279 taylply2 26282 taylply2OLD 26283 taylply 26284 efgh 26457 efabl 26466 efsubm 26467 jensenlem1 26904 jensenlem2 26905 jensen 26906 amgmlem 26907 amgm 26908 wilthlem2 26986 wilthlem3 26987 dchrelbas2 27155 dchrelbas3 27156 dchrn0 27168 dchrghm 27174 dchrabs 27178 sum2dchr 27192 lgseisenlem4 27296 qrngbas 27537 cchhllem 28821 cffldtocusgr 29381 cffldtocusgrOLD 29382 gsumzrsum 33006 psgnid 33061 cnmsgn0g 33110 altgnsg 33113 1fldgenq 33279 xrge0slmod 33326 znfermltl 33344 ccfldsrarelvec 33673 ccfldextdgrr 33674 constrelextdg2 33744 constrextdg2lem 33745 constrext2chnlem 33747 constrcon 33771 constrsdrg 33772 2sqr3minply 33777 cos9thpiminplylem6 33784 cos9thpiminply 33785 iistmd 33899 xrge0iifmhm 33936 xrge0pluscn 33937 zringnm 33955 cnzh 33965 rezh 33966 cnrrext 34007 esumpfinvallem 34071 cnpwstotbnd 37798 repwsmet 37835 rrnequiv 37836 cnsrexpcl 43161 fsumcnsrcl 43162 cnsrplycl 43163 rngunsnply 43165 proot1ex 43192 deg1mhm 43196 amgm2d 44194 amgm3d 44195 amgm4d 44196 binomcxplemdvbinom 44349 binomcxplemnotnn0 44352 sge0tsms 46385 cnfldsrngbas 48153 2zrng0 48236 aacllem 49794 amgmwlem 49795 amgmlemALT 49796 amgmw2d 49797 |
| Copyright terms: Public domain | W3C validator |