| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfldbas | Structured version Visualization version GIF version | ||
| Description: The base set of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21314. (Revised by GG, 31-Mar-2025.) |
| Ref | Expression |
|---|---|
| cnfldbas | ⊢ ℂ = (Base‘ℂfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11208 | . 2 ⊢ ℂ ∈ V | |
| 2 | cnfldstr 21315 | . . 3 ⊢ ℂfld Struct 〈1, ;13〉 | |
| 3 | baseid 17229 | . . 3 ⊢ Base = Slot (Base‘ndx) | |
| 4 | snsstp1 4792 | . . . 4 ⊢ {〈(Base‘ndx), ℂ〉} ⊆ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} | |
| 5 | ssun1 4153 | . . . . 5 ⊢ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ⊆ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) | |
| 6 | ssun1 4153 | . . . . . 6 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ⊆ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
| 7 | df-cnfld 21314 | . . . . . 6 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
| 8 | 6, 7 | sseqtrri 4008 | . . . . 5 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ⊆ ℂfld |
| 9 | 5, 8 | sstri 3968 | . . . 4 ⊢ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ⊆ ℂfld |
| 10 | 4, 9 | sstri 3968 | . . 3 ⊢ {〈(Base‘ndx), ℂ〉} ⊆ ℂfld |
| 11 | 2, 3, 10 | strfv 17220 | . 2 ⊢ (ℂ ∈ V → ℂ = (Base‘ℂfld)) |
| 12 | 1, 11 | ax-mp 5 | 1 ⊢ ℂ = (Base‘ℂfld) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∪ cun 3924 {csn 4601 {ctp 4605 〈cop 4607 ∘ ccom 5658 ‘cfv 6530 (class class class)co 7403 ∈ cmpo 7405 ℂcc 11125 1c1 11128 + caddc 11130 · cmul 11132 ≤ cle 11268 − cmin 11464 3c3 12294 ;cdc 12706 ∗ccj 15113 abscabs 15251 ndxcnx 17210 Basecbs 17226 +gcplusg 17269 .rcmulr 17270 *𝑟cstv 17271 TopSetcts 17275 lecple 17276 distcds 17278 UnifSetcunif 17279 MetOpencmopn 21303 metUnifcmetu 21304 ℂfldccnfld 21313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-fz 13523 df-struct 17164 df-slot 17199 df-ndx 17211 df-base 17227 df-plusg 17282 df-mulr 17283 df-starv 17284 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-cnfld 21314 |
| This theorem is referenced by: cncrng 21349 cncrngOLD 21350 cnfld0 21353 cnfld1 21354 cnfld1OLD 21355 cnfldneg 21356 cnfldplusf 21357 cnfldsub 21358 cndrng 21359 cndrngOLD 21360 cnflddiv 21361 cnflddivOLD 21362 cnfldinv 21363 cnfldmulg 21364 cnfldexp 21365 cnsrng 21366 cnsubmlem 21380 cnsubglem 21381 cnsubrglem 21382 cnsubrglemOLD 21383 cnsubdrglem 21384 absabv 21390 cnsubrg 21393 cnmgpabl 21394 cnmgpid 21395 cnmsubglem 21396 gzrngunit 21399 gsumfsum 21400 regsumfsum 21401 expmhm 21402 nn0srg 21403 rge0srg 21404 zringbas 21412 zring0 21417 zringunit 21425 expghm 21434 fermltlchr 21488 cnmsgnbas 21536 psgninv 21540 zrhpsgnmhm 21542 rebase 21564 re0g 21570 regsumsupp 21580 cnfldms 24712 cnfldnm 24715 cnfldtopn 24718 cnfldtopon 24719 clmsscn 25028 cnlmod 25089 cnstrcvs 25090 cnrbas 25091 cncvs 25094 cnncvsaddassdemo 25113 cnncvsmulassdemo 25114 cnncvsabsnegdemo 25115 cphsubrglem 25127 cphreccllem 25128 cphdivcl 25132 cphabscl 25135 cphsqrtcl2 25136 cphsqrtcl3 25137 cphipcl 25141 4cphipval2 25192 cncms 25305 cnflduss 25306 cnfldcusp 25307 resscdrg 25308 ishl2 25320 recms 25330 tdeglem3 26014 tdeglem4 26015 tdeglem2 26016 plypf1 26167 dvply2g 26242 dvply2gOLD 26243 dvply2 26244 dvnply 26246 taylfvallem 26315 taylf 26318 tayl0 26319 taylpfval 26322 taylply2 26325 taylply2OLD 26326 taylply 26327 efgh 26500 efabl 26509 efsubm 26510 jensenlem1 26947 jensenlem2 26948 jensen 26949 amgmlem 26950 amgm 26951 wilthlem2 27029 wilthlem3 27030 dchrelbas2 27198 dchrelbas3 27199 dchrn0 27211 dchrghm 27217 dchrabs 27221 sum2dchr 27235 lgseisenlem4 27339 qrngbas 27580 cchhllem 28812 cffldtocusgr 29372 cffldtocusgrOLD 29373 gsumzrsum 32999 psgnid 33054 cnmsgn0g 33103 altgnsg 33106 1fldgenq 33262 xrge0slmod 33309 znfermltl 33327 ccfldsrarelvec 33658 ccfldextdgrr 33659 constrelextdg2 33727 constrextdg2lem 33728 constrext2chnlem 33730 constrcon 33754 constrsdrg 33755 2sqr3minply 33760 cos9thpiminplylem6 33767 cos9thpiminply 33768 iistmd 33879 xrge0iifmhm 33916 xrge0pluscn 33917 zringnm 33935 cnzh 33945 rezh 33946 cnrrext 33987 esumpfinvallem 34051 cnpwstotbnd 37767 repwsmet 37804 rrnequiv 37805 cnsrexpcl 43136 fsumcnsrcl 43137 cnsrplycl 43138 rngunsnply 43140 proot1ex 43167 deg1mhm 43171 amgm2d 44169 amgm3d 44170 amgm4d 44171 binomcxplemdvbinom 44325 binomcxplemnotnn0 44328 sge0tsms 46357 cnfldsrngbas 48084 2zrng0 48167 aacllem 49613 amgmwlem 49614 amgmlemALT 49615 amgmw2d 49616 |
| Copyright terms: Public domain | W3C validator |