![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnfldbas | Structured version Visualization version GIF version |
Description: The base set of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21388. (Revised by GG, 31-Mar-2025.) |
Ref | Expression |
---|---|
cnfldbas | ⊢ ℂ = (Base‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 11265 | . 2 ⊢ ℂ ∈ V | |
2 | cnfldstr 21389 | . . 3 ⊢ ℂfld Struct 〈1, ;13〉 | |
3 | baseid 17261 | . . 3 ⊢ Base = Slot (Base‘ndx) | |
4 | snsstp1 4841 | . . . 4 ⊢ {〈(Base‘ndx), ℂ〉} ⊆ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} | |
5 | ssun1 4201 | . . . . 5 ⊢ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ⊆ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) | |
6 | ssun1 4201 | . . . . . 6 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ⊆ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
7 | df-cnfld 21388 | . . . . . 6 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
8 | 6, 7 | sseqtrri 4046 | . . . . 5 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ⊆ ℂfld |
9 | 5, 8 | sstri 4018 | . . . 4 ⊢ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ⊆ ℂfld |
10 | 4, 9 | sstri 4018 | . . 3 ⊢ {〈(Base‘ndx), ℂ〉} ⊆ ℂfld |
11 | 2, 3, 10 | strfv 17251 | . 2 ⊢ (ℂ ∈ V → ℂ = (Base‘ℂfld)) |
12 | 1, 11 | ax-mp 5 | 1 ⊢ ℂ = (Base‘ℂfld) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∪ cun 3974 {csn 4648 {ctp 4652 〈cop 4654 ∘ ccom 5704 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 ℂcc 11182 1c1 11185 + caddc 11187 · cmul 11189 ≤ cle 11325 − cmin 11520 3c3 12349 ;cdc 12758 ∗ccj 15145 abscabs 15283 ndxcnx 17240 Basecbs 17258 +gcplusg 17311 .rcmulr 17312 *𝑟cstv 17313 TopSetcts 17317 lecple 17318 distcds 17320 UnifSetcunif 17321 MetOpencmopn 21377 metUnifcmetu 21378 ℂfldccnfld 21387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-mulr 17325 df-starv 17326 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-cnfld 21388 |
This theorem is referenced by: cncrng 21424 cncrngOLD 21425 cnfld0 21428 cnfld1 21429 cnfld1OLD 21430 cnfldneg 21431 cnfldplusf 21432 cnfldsub 21433 cndrng 21434 cndrngOLD 21435 cnflddiv 21436 cnflddivOLD 21437 cnfldinv 21438 cnfldmulg 21439 cnfldexp 21440 cnsrng 21441 cnsubmlem 21455 cnsubglem 21456 cnsubrglem 21457 cnsubrglemOLD 21458 cnsubdrglem 21459 absabv 21465 cnsubrg 21468 cnmgpabl 21469 cnmgpid 21470 cnmsubglem 21471 gzrngunit 21474 gsumfsum 21475 regsumfsum 21476 expmhm 21477 nn0srg 21478 rge0srg 21479 zringbas 21487 zring0 21492 zringunit 21500 expghm 21509 fermltlchr 21567 cnmsgnbas 21619 psgninv 21623 zrhpsgnmhm 21625 rebase 21647 re0g 21653 regsumsupp 21663 cnfldms 24817 cnfldnm 24820 cnfldtopn 24823 cnfldtopon 24824 clmsscn 25131 cnlmod 25192 cnstrcvs 25193 cnrbas 25194 cncvs 25197 cnncvsaddassdemo 25216 cnncvsmulassdemo 25217 cnncvsabsnegdemo 25218 cphsubrglem 25230 cphreccllem 25231 cphdivcl 25235 cphabscl 25238 cphsqrtcl2 25239 cphsqrtcl3 25240 cphipcl 25244 4cphipval2 25295 cncms 25408 cnflduss 25409 cnfldcusp 25410 resscdrg 25411 ishl2 25423 recms 25433 tdeglem3 26118 tdeglem4 26119 tdeglem2 26120 plypf1 26271 dvply2g 26344 dvply2gOLD 26345 dvply2 26346 dvnply 26348 taylfvallem 26417 taylf 26420 tayl0 26421 taylpfval 26424 taylply2 26427 taylply2OLD 26428 taylply 26429 efgh 26601 efabl 26610 efsubm 26611 jensenlem1 27048 jensenlem2 27049 jensen 27050 amgmlem 27051 amgm 27052 wilthlem2 27130 wilthlem3 27131 dchrelbas2 27299 dchrelbas3 27300 dchrn0 27312 dchrghm 27318 dchrabs 27322 sum2dchr 27336 lgseisenlem4 27440 qrngbas 27681 cchhllem 28919 cchhllemOLD 28920 cffldtocusgr 29482 cffldtocusgrOLD 29483 psgnid 33090 cnmsgn0g 33139 altgnsg 33142 1fldgenq 33289 xrge0slmod 33341 znfermltl 33359 ccfldsrarelvec 33681 ccfldextdgrr 33682 constrelextdg2 33737 2sqr3minply 33738 iistmd 33848 xrge0iifmhm 33885 xrge0pluscn 33886 zringnm 33904 cnzh 33916 rezh 33917 cnrrext 33956 esumpfinvallem 34038 cnpwstotbnd 37757 repwsmet 37794 rrnequiv 37795 cnsrexpcl 43122 fsumcnsrcl 43123 cnsrplycl 43124 rngunsnply 43130 proot1ex 43157 deg1mhm 43161 amgm2d 44160 amgm3d 44161 amgm4d 44162 binomcxplemdvbinom 44322 binomcxplemnotnn0 44325 sge0tsms 46301 cnfldsrngbas 47884 2zrng0 47967 aacllem 48895 amgmwlem 48896 amgmlemALT 48897 amgmw2d 48898 |
Copyright terms: Public domain | W3C validator |