Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnfldadd | Structured version Visualization version GIF version |
Description: The addition operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
Ref | Expression |
---|---|
cnfldadd | ⊢ + = (+g‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addex 12728 | . 2 ⊢ + ∈ V | |
2 | cnfldstr 20599 | . . 3 ⊢ ℂfld Struct 〈1, ;13〉 | |
3 | plusgid 16989 | . . 3 ⊢ +g = Slot (+g‘ndx) | |
4 | snsstp2 4750 | . . . 4 ⊢ {〈(+g‘ndx), + 〉} ⊆ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} | |
5 | ssun1 4106 | . . . . 5 ⊢ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⊆ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) | |
6 | ssun1 4106 | . . . . . 6 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ⊆ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
7 | df-cnfld 20598 | . . . . . 6 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
8 | 6, 7 | sseqtrri 3958 | . . . . 5 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ⊆ ℂfld |
9 | 5, 8 | sstri 3930 | . . . 4 ⊢ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⊆ ℂfld |
10 | 4, 9 | sstri 3930 | . . 3 ⊢ {〈(+g‘ndx), + 〉} ⊆ ℂfld |
11 | 2, 3, 10 | strfv 16905 | . 2 ⊢ ( + ∈ V → + = (+g‘ℂfld)) |
12 | 1, 11 | ax-mp 5 | 1 ⊢ + = (+g‘ℂfld) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∪ cun 3885 {csn 4561 {ctp 4565 〈cop 4567 ∘ ccom 5593 ‘cfv 6433 ℂcc 10869 1c1 10872 + caddc 10874 · cmul 10876 ≤ cle 11010 − cmin 11205 3c3 12029 ;cdc 12437 ∗ccj 14807 abscabs 14945 ndxcnx 16894 Basecbs 16912 +gcplusg 16962 .rcmulr 16963 *𝑟cstv 16964 TopSetcts 16968 lecple 16969 distcds 16971 UnifSetcunif 16972 MetOpencmopn 20587 metUnifcmetu 20588 ℂfldccnfld 20597 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-addf 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-struct 16848 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-mulr 16976 df-starv 16977 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-cnfld 20598 |
This theorem is referenced by: cncrng 20619 cnfld0 20622 cnfldneg 20624 cnfldplusf 20625 cnfldsub 20626 cnfldmulg 20630 cnsrng 20632 cnsubmlem 20646 cnsubglem 20647 absabv 20655 cnsubrg 20658 gsumfsum 20665 regsumfsum 20666 expmhm 20667 nn0srg 20668 rge0srg 20669 zringplusg 20677 replusg 20815 regsumsupp 20827 mhpmulcl 21339 clmadd 24237 clmacl 24247 isclmp 24260 cnlmod 24303 cnncvsaddassdemo 24327 cphsqrtcl2 24350 ipcau2 24398 tdeglem3 25222 tdeglem3OLD 25223 tdeglem4 25224 tdeglem4OLD 25225 taylply2 25527 efgh 25697 efabl 25706 jensenlem1 26136 jensenlem2 26137 amgmlem 26139 qabvle 26773 padicabv 26778 ostth2lem2 26782 ostth3 26786 xrge0slmod 31548 ccfldsrarelvec 31741 ccfldextdgrr 31742 qqhghm 31938 qqhrhm 31939 esumpfinvallem 32042 mhphflem 40284 fsumcnsrcl 40991 rngunsnply 40998 deg1mhm 41032 amgm2d 41809 amgm3d 41810 amgm4d 41811 sge0tsms 43918 cnfldsrngadd 45324 aacllem 46505 amgmw2d 46508 |
Copyright terms: Public domain | W3C validator |