Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnfldadd | Structured version Visualization version GIF version |
Description: The addition operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
Ref | Expression |
---|---|
cnfldadd | ⊢ + = (+g‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addex 12657 | . 2 ⊢ + ∈ V | |
2 | cnfldstr 20512 | . . 3 ⊢ ℂfld Struct 〈1, ;13〉 | |
3 | plusgid 16915 | . . 3 ⊢ +g = Slot (+g‘ndx) | |
4 | snsstp2 4747 | . . . 4 ⊢ {〈(+g‘ndx), + 〉} ⊆ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} | |
5 | ssun1 4102 | . . . . 5 ⊢ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⊆ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) | |
6 | ssun1 4102 | . . . . . 6 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ⊆ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
7 | df-cnfld 20511 | . . . . . 6 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
8 | 6, 7 | sseqtrri 3954 | . . . . 5 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ⊆ ℂfld |
9 | 5, 8 | sstri 3926 | . . . 4 ⊢ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⊆ ℂfld |
10 | 4, 9 | sstri 3926 | . . 3 ⊢ {〈(+g‘ndx), + 〉} ⊆ ℂfld |
11 | 2, 3, 10 | strfv 16833 | . 2 ⊢ ( + ∈ V → + = (+g‘ℂfld)) |
12 | 1, 11 | ax-mp 5 | 1 ⊢ + = (+g‘ℂfld) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∪ cun 3881 {csn 4558 {ctp 4562 〈cop 4564 ∘ ccom 5584 ‘cfv 6418 ℂcc 10800 1c1 10803 + caddc 10805 · cmul 10807 ≤ cle 10941 − cmin 11135 3c3 11959 ;cdc 12366 ∗ccj 14735 abscabs 14873 ndxcnx 16822 Basecbs 16840 +gcplusg 16888 .rcmulr 16889 *𝑟cstv 16890 TopSetcts 16894 lecple 16895 distcds 16897 UnifSetcunif 16898 MetOpencmopn 20500 metUnifcmetu 20501 ℂfldccnfld 20510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-addf 10881 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mulr 16902 df-starv 16903 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-cnfld 20511 |
This theorem is referenced by: cncrng 20531 cnfld0 20534 cnfldneg 20536 cnfldplusf 20537 cnfldsub 20538 cnfldmulg 20542 cnsrng 20544 cnsubmlem 20558 cnsubglem 20559 absabv 20567 cnsubrg 20570 gsumfsum 20577 regsumfsum 20578 expmhm 20579 nn0srg 20580 rge0srg 20581 zringplusg 20589 replusg 20727 regsumsupp 20739 mhpmulcl 21249 clmadd 24143 clmacl 24153 isclmp 24166 cnlmod 24209 cnncvsaddassdemo 24232 cphsqrtcl2 24255 ipcau2 24303 tdeglem3 25127 tdeglem3OLD 25128 tdeglem4 25129 tdeglem4OLD 25130 taylply2 25432 efgh 25602 efabl 25611 jensenlem1 26041 jensenlem2 26042 amgmlem 26044 qabvle 26678 padicabv 26683 ostth2lem2 26687 ostth3 26691 xrge0slmod 31450 ccfldsrarelvec 31643 ccfldextdgrr 31644 qqhghm 31838 qqhrhm 31839 esumpfinvallem 31942 mhphflem 40207 fsumcnsrcl 40907 rngunsnply 40914 deg1mhm 40948 amgm2d 41698 amgm3d 41699 amgm4d 41700 sge0tsms 43808 cnfldsrngadd 45212 aacllem 46391 amgmw2d 46394 |
Copyright terms: Public domain | W3C validator |