MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldadd Structured version   Visualization version   GIF version

Theorem cnfldadd 20246
Description: The addition operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
Assertion
Ref Expression
cnfldadd + = (+g‘ℂfld)

Proof of Theorem cnfldadd
StepHypRef Expression
1 addex 12196 . 2 + ∈ V
2 cnfldstr 20243 . . 3 fld Struct ⟨1, 13⟩
3 plusgid 16446 . . 3 +g = Slot (+g‘ndx)
4 snsstp2 4618 . . . 4 {⟨(+g‘ndx), + ⟩} ⊆ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}
5 ssun1 4031 . . . . 5 {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ⊆ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
6 ssun1 4031 . . . . . 6 ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ⊆ (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
7 df-cnfld 20242 . . . . . 6 fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
86, 7sseqtr4i 3888 . . . . 5 ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ⊆ ℂfld
95, 8sstri 3861 . . . 4 {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ⊆ ℂfld
104, 9sstri 3861 . . 3 {⟨(+g‘ndx), + ⟩} ⊆ ℂfld
112, 3, 10strfv 16381 . 2 ( + ∈ V → + = (+g‘ℂfld))
121, 11ax-mp 5 1 + = (+g‘ℂfld)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1507  wcel 2050  Vcvv 3409  cun 3821  {csn 4435  {ctp 4439  cop 4441  ccom 5405  cfv 6182  cc 10327  1c1 10330   + caddc 10332   · cmul 10334  cle 10469  cmin 10664  3c3 11490  cdc 11905  ccj 14310  abscabs 14448  ndxcnx 16330  Basecbs 16333  +gcplusg 16415  .rcmulr 16416  *𝑟cstv 16417  TopSetcts 16421  lecple 16422  distcds 16424  UnifSetcunif 16425  MetOpencmopn 20231  metUnifcmetu 20232  fldccnfld 20241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10385  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405  ax-pre-mulgt0 10406  ax-addf 10408
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7495  df-2nd 7496  df-wrecs 7744  df-recs 7806  df-rdg 7844  df-1o 7899  df-oadd 7903  df-er 8083  df-en 8301  df-dom 8302  df-sdom 8303  df-fin 8304  df-pnf 10470  df-mnf 10471  df-xr 10472  df-ltxr 10473  df-le 10474  df-sub 10666  df-neg 10667  df-nn 11434  df-2 11497  df-3 11498  df-4 11499  df-5 11500  df-6 11501  df-7 11502  df-8 11503  df-9 11504  df-n0 11702  df-z 11788  df-dec 11906  df-uz 12053  df-fz 12703  df-struct 16335  df-ndx 16336  df-slot 16337  df-base 16339  df-plusg 16428  df-mulr 16429  df-starv 16430  df-tset 16434  df-ple 16435  df-ds 16437  df-unif 16438  df-cnfld 20242
This theorem is referenced by:  cncrng  20262  cnfld0  20265  cnfldneg  20267  cnfldplusf  20268  cnfldsub  20269  cnfldmulg  20273  cnsrng  20275  cnsubmlem  20289  cnsubglem  20290  absabv  20298  cnsubrg  20301  gsumfsum  20308  regsumfsum  20309  expmhm  20310  nn0srg  20311  rge0srg  20312  zringplusg  20320  replusg  20450  regsumsupp  20462  clmadd  23375  clmacl  23385  isclmp  23398  cnlmod  23441  cnncvsaddassdemo  23464  cphsqrtcl2  23487  ipcau2  23534  tdeglem3  24350  tdeglem4  24351  taylply2  24653  efgh  24820  efabl  24829  jensenlem1  25260  jensenlem2  25261  amgmlem  25263  qabvle  25897  padicabv  25902  ostth2lem2  25906  ostth3  25910  xrge0slmod  30596  ccfldsrarelvec  30685  ccfldextdgrr  30686  qqhghm  30873  qqhrhm  30874  esumpfinvallem  30977  fsumcnsrcl  39162  rngunsnply  39169  deg1mhm  39203  amgm2d  39916  amgm3d  39917  amgm4d  39918  sge0tsms  42093  cnfldsrngadd  43405  aacllem  44269  amgmw2d  44272
  Copyright terms: Public domain W3C validator