| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfldadd | Structured version Visualization version GIF version | ||
| Description: The addition operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21316. (Revised by GG, 27-Apr-2025.) |
| Ref | Expression |
|---|---|
| cnfldadd | ⊢ + = (+g‘ℂfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addf 11208 | . . . 4 ⊢ + :(ℂ × ℂ)⟶ℂ | |
| 2 | ffn 6706 | . . . 4 ⊢ ( + :(ℂ × ℂ)⟶ℂ → + Fn (ℂ × ℂ)) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ + Fn (ℂ × ℂ) |
| 4 | fnov 7538 | . . 3 ⊢ ( + Fn (ℂ × ℂ) ↔ + = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))) | |
| 5 | 3, 4 | mpbi 230 | . 2 ⊢ + = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) |
| 6 | mpocnfldadd 21320 | . 2 ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) = (+g‘ℂfld) | |
| 7 | 5, 6 | eqtri 2758 | 1 ⊢ + = (+g‘ℂfld) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 × cxp 5652 Fn wfn 6526 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 ℂcc 11127 + caddc 11132 +gcplusg 17271 ℂfldccnfld 21315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-addf 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-struct 17166 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-mulr 17285 df-starv 17286 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-cnfld 21316 |
| This theorem is referenced by: cncrng 21351 cncrngOLD 21352 cnfld0 21355 cnfldneg 21358 cnfldplusf 21359 cnfldsub 21360 cnfldmulg 21366 cnsrng 21368 cnsubmlem 21382 cnsubglem 21383 absabv 21392 cnsubrg 21395 gsumfsum 21402 regsumfsum 21403 expmhm 21404 nn0srg 21405 rge0srg 21406 zringplusg 21415 replusg 21570 regsumsupp 21582 mhpmulcl 22087 clmadd 25025 clmacl 25035 isclmp 25048 cnlmod 25091 cnncvsaddassdemo 25115 cphsqrtcl2 25138 ipcau2 25186 tdeglem3 26016 tdeglem4 26017 taylply2 26327 taylply2OLD 26328 efgh 26502 efabl 26511 jensenlem1 26949 jensenlem2 26950 qabvle 27588 padicabv 27593 ostth2lem2 27597 ostth3 27601 gsumzrsum 33053 xrge0slmod 33363 zringfrac 33569 ccfldsrarelvec 33712 ccfldextdgrr 33713 constrelextdg2 33781 constrsdrg 33809 2sqr3minply 33814 cos9thpiminplylem6 33821 cos9thpiminply 33822 qqhghm 34019 qqhrhm 34020 esumpfinvallem 34105 mhphflem 42619 fsumcnsrcl 43190 rngunsnply 43193 deg1mhm 43224 amgm2d 44222 amgm3d 44223 amgm4d 44224 sge0tsms 46409 cnfldsrngadd 48137 aacllem 49665 amgmw2d 49668 |
| Copyright terms: Public domain | W3C validator |