MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldadd Structured version   Visualization version   GIF version

Theorem cnfldadd 21149
Description: The addition operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
Assertion
Ref Expression
cnfldadd + = (+g‘ℂfld)

Proof of Theorem cnfldadd
StepHypRef Expression
1 addex 12976 . 2 + ∈ V
2 cnfldstr 21146 . . 3 fld Struct ⟨1, 13⟩
3 plusgid 17228 . . 3 +g = Slot (+g‘ndx)
4 snsstp2 4819 . . . 4 {⟨(+g‘ndx), + ⟩} ⊆ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}
5 ssun1 4171 . . . . 5 {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ⊆ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
6 ssun1 4171 . . . . . 6 ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ⊆ (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
7 df-cnfld 21145 . . . . . 6 fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
86, 7sseqtrri 4018 . . . . 5 ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ⊆ ℂfld
95, 8sstri 3990 . . . 4 {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ⊆ ℂfld
104, 9sstri 3990 . . 3 {⟨(+g‘ndx), + ⟩} ⊆ ℂfld
112, 3, 10strfv 17141 . 2 ( + ∈ V → + = (+g‘ℂfld))
121, 11ax-mp 5 1 + = (+g‘ℂfld)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2104  Vcvv 3472  cun 3945  {csn 4627  {ctp 4631  cop 4633  ccom 5679  cfv 6542  cc 11110  1c1 11113   + caddc 11115   · cmul 11117  cle 11253  cmin 11448  3c3 12272  cdc 12681  ccj 15047  abscabs 15185  ndxcnx 17130  Basecbs 17148  +gcplusg 17201  .rcmulr 17202  *𝑟cstv 17203  TopSetcts 17207  lecple 17208  distcds 17210  UnifSetcunif 17211  MetOpencmopn 21134  metUnifcmetu 21135  fldccnfld 21144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-addf 11191
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-fz 13489  df-struct 17084  df-slot 17119  df-ndx 17131  df-base 17149  df-plusg 17214  df-mulr 17215  df-starv 17216  df-tset 17220  df-ple 17221  df-ds 17223  df-unif 17224  df-cnfld 21145
This theorem is referenced by:  cncrng  21166  cnfld0  21169  cnfldneg  21171  cnfldplusf  21172  cnfldsub  21173  cnfldmulg  21177  cnsrng  21179  cnsubmlem  21193  cnsubglem  21194  absabv  21202  cnsubrg  21205  gsumfsum  21212  regsumfsum  21213  expmhm  21214  nn0srg  21215  rge0srg  21216  zringplusg  21225  replusg  21382  regsumsupp  21394  mhpmulcl  21911  clmadd  24821  clmacl  24831  isclmp  24844  cnlmod  24887  cnncvsaddassdemo  24911  cphsqrtcl2  24934  ipcau2  24982  tdeglem3  25810  tdeglem3OLD  25811  tdeglem4  25812  tdeglem4OLD  25813  taylply2  26116  efgh  26286  efabl  26295  jensenlem1  26727  jensenlem2  26728  qabvle  27364  padicabv  27369  ostth2lem2  27373  ostth3  27377  xrge0slmod  32733  ccfldsrarelvec  33034  ccfldextdgrr  33035  qqhghm  33266  qqhrhm  33267  esumpfinvallem  33370  gg-cncrng  35486  mhphflem  41470  fsumcnsrcl  42210  rngunsnply  42217  deg1mhm  42251  amgm2d  43252  amgm3d  43253  amgm4d  43254  sge0tsms  45394  cnfldsrngadd  46838  aacllem  47935  amgmw2d  47938
  Copyright terms: Public domain W3C validator