![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cffldtocusgr | Structured version Visualization version GIF version |
Description: The field of complex numbers can be made a complete simple graph with the set of pairs of complex numbers regarded as edges. This theorem demonstrates the capabilities of the current definitions for graphs applied to extensible structures. (Contributed by AV, 14-Nov-2021.) (Proof shortened by AV, 17-Nov-2021.) Revise df-cnfld 21297. (Revised by GG, 31-Mar-2025.) |
Ref | Expression |
---|---|
cffldtocusgr.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 ℂ ∣ (♯‘𝑥) = 2} |
cffldtocusgr.g | ⊢ 𝐺 = (ℂfld sSet 〈(.ef‘ndx), ( I ↾ 𝑃)〉) |
Ref | Expression |
---|---|
cffldtocusgr | ⊢ 𝐺 ∈ ComplUSGraph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5466 | . . . . . . 7 ⊢ 〈(Base‘ndx), ℂ〉 ∈ V | |
2 | 1 | tpid1 4774 | . . . . . 6 ⊢ 〈(Base‘ndx), ℂ〉 ∈ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} |
3 | 2 | orci 863 | . . . . 5 ⊢ (〈(Base‘ndx), ℂ〉 ∈ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∨ 〈(Base‘ndx), ℂ〉 ∈ {〈(*𝑟‘ndx), ∗〉}) |
4 | elun 4145 | . . . . 5 ⊢ (〈(Base‘ndx), ℂ〉 ∈ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ↔ (〈(Base‘ndx), ℂ〉 ∈ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∨ 〈(Base‘ndx), ℂ〉 ∈ {〈(*𝑟‘ndx), ∗〉})) | |
5 | 3, 4 | mpbir 230 | . . . 4 ⊢ 〈(Base‘ndx), ℂ〉 ∈ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) |
6 | 5 | orci 863 | . . 3 ⊢ (〈(Base‘ndx), ℂ〉 ∈ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∨ 〈(Base‘ndx), ℂ〉 ∈ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) |
7 | df-cnfld 21297 | . . . . 5 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
8 | 7 | eleq2i 2817 | . . . 4 ⊢ (〈(Base‘ndx), ℂ〉 ∈ ℂfld ↔ 〈(Base‘ndx), ℂ〉 ∈ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}))) |
9 | elun 4145 | . . . 4 ⊢ (〈(Base‘ndx), ℂ〉 ∈ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) ↔ (〈(Base‘ndx), ℂ〉 ∈ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∨ 〈(Base‘ndx), ℂ〉 ∈ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}))) | |
10 | 8, 9 | bitri 274 | . . 3 ⊢ (〈(Base‘ndx), ℂ〉 ∈ ℂfld ↔ (〈(Base‘ndx), ℂ〉 ∈ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∨ 〈(Base‘ndx), ℂ〉 ∈ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}))) |
11 | 6, 10 | mpbir 230 | . 2 ⊢ 〈(Base‘ndx), ℂ〉 ∈ ℂfld |
12 | cffldtocusgr.p | . . . 4 ⊢ 𝑃 = {𝑥 ∈ 𝒫 ℂ ∣ (♯‘𝑥) = 2} | |
13 | cnfldbas 21300 | . . . . . 6 ⊢ ℂ = (Base‘ℂfld) | |
14 | 13 | pweqi 4620 | . . . . 5 ⊢ 𝒫 ℂ = 𝒫 (Base‘ℂfld) |
15 | 14 | rabeqi 3432 | . . . 4 ⊢ {𝑥 ∈ 𝒫 ℂ ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 (Base‘ℂfld) ∣ (♯‘𝑥) = 2} |
16 | 12, 15 | eqtri 2753 | . . 3 ⊢ 𝑃 = {𝑥 ∈ 𝒫 (Base‘ℂfld) ∣ (♯‘𝑥) = 2} |
17 | cnfldstr 21298 | . . . 4 ⊢ ℂfld Struct 〈1, ;13〉 | |
18 | 17 | a1i 11 | . . 3 ⊢ (〈(Base‘ndx), ℂ〉 ∈ ℂfld → ℂfld Struct 〈1, ;13〉) |
19 | cffldtocusgr.g | . . 3 ⊢ 𝐺 = (ℂfld sSet 〈(.ef‘ndx), ( I ↾ 𝑃)〉) | |
20 | fvex 6909 | . . . 4 ⊢ (Base‘ndx) ∈ V | |
21 | cnex 11221 | . . . 4 ⊢ ℂ ∈ V | |
22 | 20, 21 | opeldm 5910 | . . 3 ⊢ (〈(Base‘ndx), ℂ〉 ∈ ℂfld → (Base‘ndx) ∈ dom ℂfld) |
23 | 16, 18, 19, 22 | structtocusgr 29331 | . 2 ⊢ (〈(Base‘ndx), ℂ〉 ∈ ℂfld → 𝐺 ∈ ComplUSGraph) |
24 | 11, 23 | ax-mp 5 | 1 ⊢ 𝐺 ∈ ComplUSGraph |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 845 = wceq 1533 ∈ wcel 2098 {crab 3418 ∪ cun 3942 𝒫 cpw 4604 {csn 4630 {ctp 4634 〈cop 4636 class class class wbr 5149 I cid 5575 ↾ cres 5680 ∘ ccom 5682 ‘cfv 6549 (class class class)co 7419 ∈ cmpo 7421 ℂcc 11138 1c1 11141 + caddc 11143 · cmul 11145 ≤ cle 11281 − cmin 11476 2c2 12300 3c3 12301 ;cdc 12710 ♯chash 14325 ∗ccj 15079 abscabs 15217 Struct cstr 17118 sSet csts 17135 ndxcnx 17165 Basecbs 17183 +gcplusg 17236 .rcmulr 17237 *𝑟cstv 17238 TopSetcts 17242 lecple 17243 distcds 17245 UnifSetcunif 17246 MetOpencmopn 21286 metUnifcmetu 21287 ℂfldccnfld 21296 .efcedgf 28871 ComplUSGraphccusgr 29295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-oadd 8491 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9926 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-xnn0 12578 df-z 12592 df-dec 12711 df-uz 12856 df-fz 13520 df-hash 14326 df-struct 17119 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-plusg 17249 df-mulr 17250 df-starv 17251 df-tset 17255 df-ple 17256 df-ds 17258 df-unif 17259 df-cnfld 21297 df-edgf 28872 df-vtx 28883 df-iedg 28884 df-edg 28933 df-usgr 29036 df-nbgr 29218 df-uvtx 29271 df-cplgr 29296 df-cusgr 29297 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |