MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cffldtocusgr Structured version   Visualization version   GIF version

Theorem cffldtocusgr 27795
Description: The field of complex numbers can be made a complete simple graph with the set of pairs of complex numbers regarded as edges. This theorem demonstrates the capabilities of the current definitions for graphs applied to extensible structures. (Contributed by AV, 14-Nov-2021.) (Proof shortened by AV, 17-Nov-2021.)
Hypotheses
Ref Expression
cffldtocusgr.p 𝑃 = {𝑥 ∈ 𝒫 ℂ ∣ (♯‘𝑥) = 2}
cffldtocusgr.g 𝐺 = (ℂfld sSet ⟨(.ef‘ndx), ( I ↾ 𝑃)⟩)
Assertion
Ref Expression
cffldtocusgr 𝐺 ∈ ComplUSGraph
Distinct variable groups:   𝑥,𝐺   𝑥,𝑃

Proof of Theorem cffldtocusgr
StepHypRef Expression
1 opex 5381 . . . . . . 7 ⟨(Base‘ndx), ℂ⟩ ∈ V
21tpid1 4709 . . . . . 6 ⟨(Base‘ndx), ℂ⟩ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}
32orci 861 . . . . 5 (⟨(Base‘ndx), ℂ⟩ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∨ ⟨(Base‘ndx), ℂ⟩ ∈ {⟨(*𝑟‘ndx), ∗⟩})
4 elun 4087 . . . . 5 (⟨(Base‘ndx), ℂ⟩ ∈ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ↔ (⟨(Base‘ndx), ℂ⟩ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∨ ⟨(Base‘ndx), ℂ⟩ ∈ {⟨(*𝑟‘ndx), ∗⟩}))
53, 4mpbir 230 . . . 4 ⟨(Base‘ndx), ℂ⟩ ∈ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
65orci 861 . . 3 (⟨(Base‘ndx), ℂ⟩ ∈ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∨ ⟨(Base‘ndx), ℂ⟩ ∈ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
7 df-cnfld 20579 . . . . 5 fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
87eleq2i 2831 . . . 4 (⟨(Base‘ndx), ℂ⟩ ∈ ℂfld ↔ ⟨(Base‘ndx), ℂ⟩ ∈ (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
9 elun 4087 . . . 4 (⟨(Base‘ndx), ℂ⟩ ∈ (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ↔ (⟨(Base‘ndx), ℂ⟩ ∈ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∨ ⟨(Base‘ndx), ℂ⟩ ∈ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
108, 9bitri 274 . . 3 (⟨(Base‘ndx), ℂ⟩ ∈ ℂfld ↔ (⟨(Base‘ndx), ℂ⟩ ∈ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∨ ⟨(Base‘ndx), ℂ⟩ ∈ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
116, 10mpbir 230 . 2 ⟨(Base‘ndx), ℂ⟩ ∈ ℂfld
12 cffldtocusgr.p . . . 4 𝑃 = {𝑥 ∈ 𝒫 ℂ ∣ (♯‘𝑥) = 2}
13 cnfldbas 20582 . . . . . 6 ℂ = (Base‘ℂfld)
1413pweqi 4556 . . . . 5 𝒫 ℂ = 𝒫 (Base‘ℂfld)
1514rabeqi 3414 . . . 4 {𝑥 ∈ 𝒫 ℂ ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 (Base‘ℂfld) ∣ (♯‘𝑥) = 2}
1612, 15eqtri 2767 . . 3 𝑃 = {𝑥 ∈ 𝒫 (Base‘ℂfld) ∣ (♯‘𝑥) = 2}
17 cnfldstr 20580 . . . 4 fld Struct ⟨1, 13⟩
1817a1i 11 . . 3 (⟨(Base‘ndx), ℂ⟩ ∈ ℂfld → ℂfld Struct ⟨1, 13⟩)
19 cffldtocusgr.g . . 3 𝐺 = (ℂfld sSet ⟨(.ef‘ndx), ( I ↾ 𝑃)⟩)
20 fvex 6781 . . . 4 (Base‘ndx) ∈ V
21 cnex 10936 . . . 4 ℂ ∈ V
2220, 21opeldm 5813 . . 3 (⟨(Base‘ndx), ℂ⟩ ∈ ℂfld → (Base‘ndx) ∈ dom ℂfld)
2316, 18, 19, 22structtocusgr 27794 . 2 (⟨(Base‘ndx), ℂ⟩ ∈ ℂfld𝐺 ∈ ComplUSGraph)
2411, 23ax-mp 5 1 𝐺 ∈ ComplUSGraph
Colors of variables: wff setvar class
Syntax hints:  wo 843   = wceq 1541  wcel 2109  {crab 3069  cun 3889  𝒫 cpw 4538  {csn 4566  {ctp 4570  cop 4572   class class class wbr 5078   I cid 5487  cres 5590  ccom 5592  cfv 6430  (class class class)co 7268  cc 10853  1c1 10856   + caddc 10858   · cmul 10860  cle 10994  cmin 11188  2c2 12011  3c3 12012  cdc 12419  chash 14025  ccj 14788  abscabs 14926   Struct cstr 16828   sSet csts 16845  ndxcnx 16875  Basecbs 16893  +gcplusg 16943  .rcmulr 16944  *𝑟cstv 16945  TopSetcts 16949  lecple 16950  distcds 16952  UnifSetcunif 16953  MetOpencmopn 20568  metUnifcmetu 20569  fldccnfld 20578  .efcedgf 27337  ComplUSGraphccusgr 27758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-oadd 8285  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-dju 9643  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-xnn0 12289  df-z 12303  df-dec 12420  df-uz 12565  df-fz 13222  df-hash 14026  df-struct 16829  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-plusg 16956  df-mulr 16957  df-starv 16958  df-tset 16962  df-ple 16963  df-ds 16965  df-unif 16966  df-cnfld 20579  df-edgf 27338  df-vtx 27349  df-iedg 27350  df-edg 27399  df-usgr 27502  df-nbgr 27681  df-uvtx 27734  df-cplgr 27759  df-cusgr 27760
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator