| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cffldtocusgr | Structured version Visualization version GIF version | ||
| Description: The field of complex numbers can be made a complete simple graph with the set of pairs of complex numbers regarded as edges. This theorem demonstrates the capabilities of the current definitions for graphs applied to extensible structures. (Contributed by AV, 14-Nov-2021.) (Proof shortened by AV, 17-Nov-2021.) Revise df-cnfld 21316. (Revised by GG, 31-Mar-2025.) |
| Ref | Expression |
|---|---|
| cffldtocusgr.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 ℂ ∣ (♯‘𝑥) = 2} |
| cffldtocusgr.g | ⊢ 𝐺 = (ℂfld sSet 〈(.ef‘ndx), ( I ↾ 𝑃)〉) |
| Ref | Expression |
|---|---|
| cffldtocusgr | ⊢ 𝐺 ∈ ComplUSGraph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5439 | . . . . . . 7 ⊢ 〈(Base‘ndx), ℂ〉 ∈ V | |
| 2 | 1 | tpid1 4744 | . . . . . 6 ⊢ 〈(Base‘ndx), ℂ〉 ∈ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} |
| 3 | 2 | orci 865 | . . . . 5 ⊢ (〈(Base‘ndx), ℂ〉 ∈ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∨ 〈(Base‘ndx), ℂ〉 ∈ {〈(*𝑟‘ndx), ∗〉}) |
| 4 | elun 4128 | . . . . 5 ⊢ (〈(Base‘ndx), ℂ〉 ∈ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ↔ (〈(Base‘ndx), ℂ〉 ∈ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∨ 〈(Base‘ndx), ℂ〉 ∈ {〈(*𝑟‘ndx), ∗〉})) | |
| 5 | 3, 4 | mpbir 231 | . . . 4 ⊢ 〈(Base‘ndx), ℂ〉 ∈ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) |
| 6 | 5 | orci 865 | . . 3 ⊢ (〈(Base‘ndx), ℂ〉 ∈ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∨ 〈(Base‘ndx), ℂ〉 ∈ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) |
| 7 | df-cnfld 21316 | . . . . 5 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
| 8 | 7 | eleq2i 2826 | . . . 4 ⊢ (〈(Base‘ndx), ℂ〉 ∈ ℂfld ↔ 〈(Base‘ndx), ℂ〉 ∈ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}))) |
| 9 | elun 4128 | . . . 4 ⊢ (〈(Base‘ndx), ℂ〉 ∈ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) ↔ (〈(Base‘ndx), ℂ〉 ∈ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∨ 〈(Base‘ndx), ℂ〉 ∈ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}))) | |
| 10 | 8, 9 | bitri 275 | . . 3 ⊢ (〈(Base‘ndx), ℂ〉 ∈ ℂfld ↔ (〈(Base‘ndx), ℂ〉 ∈ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∨ 〈(Base‘ndx), ℂ〉 ∈ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}))) |
| 11 | 6, 10 | mpbir 231 | . 2 ⊢ 〈(Base‘ndx), ℂ〉 ∈ ℂfld |
| 12 | cffldtocusgr.p | . . . 4 ⊢ 𝑃 = {𝑥 ∈ 𝒫 ℂ ∣ (♯‘𝑥) = 2} | |
| 13 | cnfldbas 21319 | . . . . . 6 ⊢ ℂ = (Base‘ℂfld) | |
| 14 | 13 | pweqi 4591 | . . . . 5 ⊢ 𝒫 ℂ = 𝒫 (Base‘ℂfld) |
| 15 | 14 | rabeqi 3429 | . . . 4 ⊢ {𝑥 ∈ 𝒫 ℂ ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 (Base‘ℂfld) ∣ (♯‘𝑥) = 2} |
| 16 | 12, 15 | eqtri 2758 | . . 3 ⊢ 𝑃 = {𝑥 ∈ 𝒫 (Base‘ℂfld) ∣ (♯‘𝑥) = 2} |
| 17 | cnfldstr 21317 | . . . 4 ⊢ ℂfld Struct 〈1, ;13〉 | |
| 18 | 17 | a1i 11 | . . 3 ⊢ (〈(Base‘ndx), ℂ〉 ∈ ℂfld → ℂfld Struct 〈1, ;13〉) |
| 19 | cffldtocusgr.g | . . 3 ⊢ 𝐺 = (ℂfld sSet 〈(.ef‘ndx), ( I ↾ 𝑃)〉) | |
| 20 | fvex 6889 | . . . 4 ⊢ (Base‘ndx) ∈ V | |
| 21 | cnex 11210 | . . . 4 ⊢ ℂ ∈ V | |
| 22 | 20, 21 | opeldm 5887 | . . 3 ⊢ (〈(Base‘ndx), ℂ〉 ∈ ℂfld → (Base‘ndx) ∈ dom ℂfld) |
| 23 | 16, 18, 19, 22 | structtocusgr 29425 | . 2 ⊢ (〈(Base‘ndx), ℂ〉 ∈ ℂfld → 𝐺 ∈ ComplUSGraph) |
| 24 | 11, 23 | ax-mp 5 | 1 ⊢ 𝐺 ∈ ComplUSGraph |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1540 ∈ wcel 2108 {crab 3415 ∪ cun 3924 𝒫 cpw 4575 {csn 4601 {ctp 4605 〈cop 4607 class class class wbr 5119 I cid 5547 ↾ cres 5656 ∘ ccom 5658 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 ℂcc 11127 1c1 11130 + caddc 11132 · cmul 11134 ≤ cle 11270 − cmin 11466 2c2 12295 3c3 12296 ;cdc 12708 ♯chash 14348 ∗ccj 15115 abscabs 15253 Struct cstr 17165 sSet csts 17182 ndxcnx 17212 Basecbs 17228 +gcplusg 17271 .rcmulr 17272 *𝑟cstv 17273 TopSetcts 17277 lecple 17278 distcds 17280 UnifSetcunif 17281 MetOpencmopn 21305 metUnifcmetu 21306 ℂfldccnfld 21315 .efcedgf 28967 ComplUSGraphccusgr 29389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-dju 9915 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-xnn0 12575 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-hash 14349 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-mulr 17285 df-starv 17286 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-cnfld 21316 df-edgf 28968 df-vtx 28977 df-iedg 28978 df-edg 29027 df-usgr 29130 df-nbgr 29312 df-uvtx 29365 df-cplgr 29390 df-cusgr 29391 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |