| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cffldtocusgr | Structured version Visualization version GIF version | ||
| Description: The field of complex numbers can be made a complete simple graph with the set of pairs of complex numbers regarded as edges. This theorem demonstrates the capabilities of the current definitions for graphs applied to extensible structures. (Contributed by AV, 14-Nov-2021.) (Proof shortened by AV, 17-Nov-2021.) Revise df-cnfld 21290. (Revised by GG, 31-Mar-2025.) |
| Ref | Expression |
|---|---|
| cffldtocusgr.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 ℂ ∣ (♯‘𝑥) = 2} |
| cffldtocusgr.g | ⊢ 𝐺 = (ℂfld sSet 〈(.ef‘ndx), ( I ↾ 𝑃)〉) |
| Ref | Expression |
|---|---|
| cffldtocusgr | ⊢ 𝐺 ∈ ComplUSGraph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5404 | . . . . . . 7 ⊢ 〈(Base‘ndx), ℂ〉 ∈ V | |
| 2 | 1 | tpid1 4721 | . . . . . 6 ⊢ 〈(Base‘ndx), ℂ〉 ∈ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} |
| 3 | 2 | orci 865 | . . . . 5 ⊢ (〈(Base‘ndx), ℂ〉 ∈ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∨ 〈(Base‘ndx), ℂ〉 ∈ {〈(*𝑟‘ndx), ∗〉}) |
| 4 | elun 4103 | . . . . 5 ⊢ (〈(Base‘ndx), ℂ〉 ∈ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ↔ (〈(Base‘ndx), ℂ〉 ∈ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∨ 〈(Base‘ndx), ℂ〉 ∈ {〈(*𝑟‘ndx), ∗〉})) | |
| 5 | 3, 4 | mpbir 231 | . . . 4 ⊢ 〈(Base‘ndx), ℂ〉 ∈ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) |
| 6 | 5 | orci 865 | . . 3 ⊢ (〈(Base‘ndx), ℂ〉 ∈ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∨ 〈(Base‘ndx), ℂ〉 ∈ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) |
| 7 | df-cnfld 21290 | . . . . 5 ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | |
| 8 | 7 | eleq2i 2823 | . . . 4 ⊢ (〈(Base‘ndx), ℂ〉 ∈ ℂfld ↔ 〈(Base‘ndx), ℂ〉 ∈ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}))) |
| 9 | elun 4103 | . . . 4 ⊢ (〈(Base‘ndx), ℂ〉 ∈ (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) ↔ (〈(Base‘ndx), ℂ〉 ∈ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∨ 〈(Base‘ndx), ℂ〉 ∈ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}))) | |
| 10 | 8, 9 | bitri 275 | . . 3 ⊢ (〈(Base‘ndx), ℂ〉 ∈ ℂfld ↔ (〈(Base‘ndx), ℂ〉 ∈ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∨ 〈(Base‘ndx), ℂ〉 ∈ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉}))) |
| 11 | 6, 10 | mpbir 231 | . 2 ⊢ 〈(Base‘ndx), ℂ〉 ∈ ℂfld |
| 12 | cffldtocusgr.p | . . . 4 ⊢ 𝑃 = {𝑥 ∈ 𝒫 ℂ ∣ (♯‘𝑥) = 2} | |
| 13 | cnfldbas 21293 | . . . . . 6 ⊢ ℂ = (Base‘ℂfld) | |
| 14 | 13 | pweqi 4566 | . . . . 5 ⊢ 𝒫 ℂ = 𝒫 (Base‘ℂfld) |
| 15 | 14 | rabeqi 3408 | . . . 4 ⊢ {𝑥 ∈ 𝒫 ℂ ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 (Base‘ℂfld) ∣ (♯‘𝑥) = 2} |
| 16 | 12, 15 | eqtri 2754 | . . 3 ⊢ 𝑃 = {𝑥 ∈ 𝒫 (Base‘ℂfld) ∣ (♯‘𝑥) = 2} |
| 17 | cnfldstr 21291 | . . . 4 ⊢ ℂfld Struct 〈1, ;13〉 | |
| 18 | 17 | a1i 11 | . . 3 ⊢ (〈(Base‘ndx), ℂ〉 ∈ ℂfld → ℂfld Struct 〈1, ;13〉) |
| 19 | cffldtocusgr.g | . . 3 ⊢ 𝐺 = (ℂfld sSet 〈(.ef‘ndx), ( I ↾ 𝑃)〉) | |
| 20 | fvex 6835 | . . . 4 ⊢ (Base‘ndx) ∈ V | |
| 21 | cnex 11084 | . . . 4 ⊢ ℂ ∈ V | |
| 22 | 20, 21 | opeldm 5847 | . . 3 ⊢ (〈(Base‘ndx), ℂ〉 ∈ ℂfld → (Base‘ndx) ∈ dom ℂfld) |
| 23 | 16, 18, 19, 22 | structtocusgr 29422 | . 2 ⊢ (〈(Base‘ndx), ℂ〉 ∈ ℂfld → 𝐺 ∈ ComplUSGraph) |
| 24 | 11, 23 | ax-mp 5 | 1 ⊢ 𝐺 ∈ ComplUSGraph |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1541 ∈ wcel 2111 {crab 3395 ∪ cun 3900 𝒫 cpw 4550 {csn 4576 {ctp 4580 〈cop 4582 class class class wbr 5091 I cid 5510 ↾ cres 5618 ∘ ccom 5620 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ℂcc 11001 1c1 11004 + caddc 11006 · cmul 11008 ≤ cle 11144 − cmin 11341 2c2 12177 3c3 12178 ;cdc 12585 ♯chash 14234 ∗ccj 15000 abscabs 15138 Struct cstr 17054 sSet csts 17071 ndxcnx 17101 Basecbs 17117 +gcplusg 17158 .rcmulr 17159 *𝑟cstv 17160 TopSetcts 17164 lecple 17165 distcds 17167 UnifSetcunif 17168 MetOpencmopn 21279 metUnifcmetu 21280 ℂfldccnfld 21289 .efcedgf 28964 ComplUSGraphccusgr 29386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9791 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-xnn0 12452 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-hash 14235 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-plusg 17171 df-mulr 17172 df-starv 17173 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-cnfld 21290 df-edgf 28965 df-vtx 28974 df-iedg 28975 df-edg 29024 df-usgr 29127 df-nbgr 29309 df-uvtx 29362 df-cplgr 29387 df-cusgr 29388 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |