Step | Hyp | Ref
| Expression |
1 | | df-cnfld 21146 |
. 2
⊢
ℂfld = (({⟨(Base‘ndx), ℂ⟩,
⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx),
· ⟩} ∪ {⟨(*𝑟‘ndx),
∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘
− ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx),
(abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx),
(metUnif‘(abs ∘ − ))⟩})) |
2 | | eqidd 2732 |
. . . . . 6
⊢ (⊤
→ ⟨(Base‘ndx), ℂ⟩ = ⟨(Base‘ndx),
ℂ⟩) |
3 | | ax-addf 11192 |
. . . . . . . . . 10
⊢ +
:(ℂ × ℂ)⟶ℂ |
4 | | ffn 6718 |
. . . . . . . . . 10
⊢ ( +
:(ℂ × ℂ)⟶ℂ → + Fn (ℂ ×
ℂ)) |
5 | 3, 4 | ax-mp 5 |
. . . . . . . . 9
⊢ + Fn
(ℂ × ℂ) |
6 | | fnov 7543 |
. . . . . . . . 9
⊢ ( + Fn
(ℂ × ℂ) ↔ + = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))) |
7 | 5, 6 | mpbi 229 |
. . . . . . . 8
⊢ + =
(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) |
8 | 7 | opeq2i 4878 |
. . . . . . 7
⊢
⟨(+g‘ndx), + ⟩ =
⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩ |
9 | 8 | a1i 11 |
. . . . . 6
⊢ (⊤
→ ⟨(+g‘ndx), + ⟩ =
⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩) |
10 | | ax-mulf 11193 |
. . . . . . . . . 10
⊢ ·
:(ℂ × ℂ)⟶ℂ |
11 | | ffn 6718 |
. . . . . . . . . 10
⊢ (
· :(ℂ × ℂ)⟶ℂ → · Fn (ℂ
× ℂ)) |
12 | 10, 11 | ax-mp 5 |
. . . . . . . . 9
⊢ ·
Fn (ℂ × ℂ) |
13 | | fnov 7543 |
. . . . . . . . 9
⊢ (
· Fn (ℂ × ℂ) ↔ · = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))) |
14 | 12, 13 | mpbi 229 |
. . . . . . . 8
⊢ ·
= (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) |
15 | 14 | opeq2i 4878 |
. . . . . . 7
⊢
⟨(.r‘ndx), · ⟩ =
⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩ |
16 | 15 | a1i 11 |
. . . . . 6
⊢ (⊤
→ ⟨(.r‘ndx), · ⟩ =
⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩) |
17 | 2, 9, 16 | tpeq123d 4753 |
. . . . 5
⊢ (⊤
→ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx),
+ ⟩, ⟨(.r‘ndx), · ⟩} =
{⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx),
(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩}) |
18 | 17 | mptru 1547 |
. . . 4
⊢
{⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx),
+ ⟩, ⟨(.r‘ndx), · ⟩} =
{⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx),
(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} |
19 | 18 | uneq1i 4160 |
. . 3
⊢
({⟨(Base‘ndx), ℂ⟩,
⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx),
· ⟩} ∪ {⟨(*𝑟‘ndx),
∗⟩}) = ({⟨(Base‘ndx), ℂ⟩,
⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx),
(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪
{⟨(*𝑟‘ndx), ∗⟩}) |
20 | 19 | uneq1i 4160 |
. 2
⊢
(({⟨(Base‘ndx), ℂ⟩,
⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx),
· ⟩} ∪ {⟨(*𝑟‘ndx),
∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘
− ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx),
(abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx),
(metUnif‘(abs ∘ − ))⟩})) = (({⟨(Base‘ndx),
ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx),
(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪
{⟨(*𝑟‘ndx), ∗⟩}) ∪
({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩,
⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ −
)⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ −
))⟩})) |
21 | 1, 20 | eqtri 2759 |
1
⊢
ℂfld = (({⟨(Base‘ndx), ℂ⟩,
⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx),
(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪
{⟨(*𝑟‘ndx), ∗⟩}) ∪
({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩,
⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ −
)⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ −
))⟩})) |