Proof of Theorem gg-dfcnfld
Step | Hyp | Ref
| Expression |
1 | | df-cnfld 21149 |
. 2
⊢
ℂfld = (({〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), + 〉, 〈(.r‘ndx),
· 〉} ∪ {〈(*𝑟‘ndx),
∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘
− ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx),
(abs ∘ − )〉} ∪ {〈(UnifSet‘ndx),
(metUnif‘(abs ∘ − ))〉})) |
2 | | eqidd 2732 |
. . . . . 6
⊢ (⊤
→ 〈(Base‘ndx), ℂ〉 = 〈(Base‘ndx),
ℂ〉) |
3 | | ax-addf 11195 |
. . . . . . . . . 10
⊢ +
:(ℂ × ℂ)⟶ℂ |
4 | | ffn 6717 |
. . . . . . . . . 10
⊢ ( +
:(ℂ × ℂ)⟶ℂ → + Fn (ℂ ×
ℂ)) |
5 | 3, 4 | ax-mp 5 |
. . . . . . . . 9
⊢ + Fn
(ℂ × ℂ) |
6 | | fnov 7543 |
. . . . . . . . 9
⊢ ( + Fn
(ℂ × ℂ) ↔ + = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))) |
7 | 5, 6 | mpbi 229 |
. . . . . . . 8
⊢ + =
(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) |
8 | 7 | opeq2i 4877 |
. . . . . . 7
⊢
〈(+g‘ndx), + 〉 =
〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉 |
9 | 8 | a1i 11 |
. . . . . 6
⊢ (⊤
→ 〈(+g‘ndx), + 〉 =
〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉) |
10 | | ax-mulf 11196 |
. . . . . . . . . 10
⊢ ·
:(ℂ × ℂ)⟶ℂ |
11 | | ffn 6717 |
. . . . . . . . . 10
⊢ (
· :(ℂ × ℂ)⟶ℂ → · Fn (ℂ
× ℂ)) |
12 | 10, 11 | ax-mp 5 |
. . . . . . . . 9
⊢ ·
Fn (ℂ × ℂ) |
13 | | fnov 7543 |
. . . . . . . . 9
⊢ (
· Fn (ℂ × ℂ) ↔ · = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))) |
14 | 12, 13 | mpbi 229 |
. . . . . . . 8
⊢ ·
= (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) |
15 | 14 | opeq2i 4877 |
. . . . . . 7
⊢
〈(.r‘ndx), · 〉 =
〈(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉 |
16 | 15 | a1i 11 |
. . . . . 6
⊢ (⊤
→ 〈(.r‘ndx), · 〉 =
〈(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉) |
17 | 2, 9, 16 | tpeq123d 4752 |
. . . . 5
⊢ (⊤
→ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx),
+ 〉, 〈(.r‘ndx), · 〉} =
{〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉}) |
18 | 17 | mptru 1547 |
. . . 4
⊢
{〈(Base‘ndx), ℂ〉, 〈(+g‘ndx),
+ 〉, 〈(.r‘ndx), · 〉} =
{〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} |
19 | 18 | uneq1i 4159 |
. . 3
⊢
({〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), + 〉, 〈(.r‘ndx),
· 〉} ∪ {〈(*𝑟‘ndx),
∗〉}) = ({〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∪
{〈(*𝑟‘ndx), ∗〉}) |
20 | 19 | uneq1i 4159 |
. 2
⊢
(({〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), + 〉, 〈(.r‘ndx),
· 〉} ∪ {〈(*𝑟‘ndx),
∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘
− ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx),
(abs ∘ − )〉} ∪ {〈(UnifSet‘ndx),
(metUnif‘(abs ∘ − ))〉})) = (({〈(Base‘ndx),
ℂ〉, 〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∪
{〈(*𝑟‘ndx), ∗〉}) ∪
({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ −
))〉})) |
21 | 1, 20 | eqtri 2759 |
1
⊢
ℂfld = (({〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∪
{〈(*𝑟‘ndx), ∗〉}) ∪
({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ −
))〉})) |