| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-zring | Structured version Visualization version GIF version | ||
| Description: The (unital) ring of integers. (Contributed by Alexander van der Vekens, 9-Jun-2019.) |
| Ref | Expression |
|---|---|
| df-zring | ⊢ ℤring = (ℂfld ↾s ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | czring 21356 | . 2 class ℤring | |
| 2 | ccnfld 21264 | . . 3 class ℂfld | |
| 3 | cz 12529 | . . 3 class ℤ | |
| 4 | cress 17200 | . . 3 class ↾s | |
| 5 | 2, 3, 4 | co 7387 | . 2 class (ℂfld ↾s ℤ) |
| 6 | 1, 5 | wceq 1540 | 1 wff ℤring = (ℂfld ↾s ℤ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: zringcrng 21358 zringbas 21363 zringplusg 21364 zringsub 21365 zringmulg 21366 zringmulr 21367 zring0 21368 zring1 21369 zringlpirlem1 21372 zringunit 21376 zringcyg 21379 zringsubgval 21380 zringmpg 21381 prmirred 21384 zndvds 21459 zringnrg 24676 zlmclm 25012 zclmncvs 25048 lgseisenlem4 27289 gsumzrsum 32999 zringnm 33948 |
| Copyright terms: Public domain | W3C validator |