| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-zring | Structured version Visualization version GIF version | ||
| Description: The (unital) ring of integers. (Contributed by Alexander van der Vekens, 9-Jun-2019.) |
| Ref | Expression |
|---|---|
| df-zring | ⊢ ℤring = (ℂfld ↾s ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | czring 21371 | . 2 class ℤring | |
| 2 | ccnfld 21279 | . . 3 class ℂfld | |
| 3 | cz 12489 | . . 3 class ℤ | |
| 4 | cress 17159 | . . 3 class ↾s | |
| 5 | 2, 3, 4 | co 7353 | . 2 class (ℂfld ↾s ℤ) |
| 6 | 1, 5 | wceq 1540 | 1 wff ℤring = (ℂfld ↾s ℤ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: zringcrng 21373 zringbas 21378 zringplusg 21379 zringsub 21380 zringmulg 21381 zringmulr 21382 zring0 21383 zring1 21384 zringlpirlem1 21387 zringunit 21391 zringcyg 21394 zringsubgval 21395 zringmpg 21396 prmirred 21399 zndvds 21474 zringnrg 24692 zlmclm 25028 zclmncvs 25064 lgseisenlem4 27305 gsumzrsum 33025 zringnm 33924 |
| Copyright terms: Public domain | W3C validator |