| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-zring | Structured version Visualization version GIF version | ||
| Description: The (unital) ring of integers. (Contributed by Alexander van der Vekens, 9-Jun-2019.) |
| Ref | Expression |
|---|---|
| df-zring | ⊢ ℤring = (ℂfld ↾s ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | czring 21405 | . 2 class ℤring | |
| 2 | ccnfld 21313 | . . 3 class ℂfld | |
| 3 | cz 12586 | . . 3 class ℤ | |
| 4 | cress 17249 | . . 3 class ↾s | |
| 5 | 2, 3, 4 | co 7403 | . 2 class (ℂfld ↾s ℤ) |
| 6 | 1, 5 | wceq 1540 | 1 wff ℤring = (ℂfld ↾s ℤ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: zringcrng 21407 zringbas 21412 zringplusg 21413 zringsub 21414 zringmulg 21415 zringmulr 21416 zring0 21417 zring1 21418 zringlpirlem1 21421 zringunit 21425 zringcyg 21428 zringsubgval 21429 zringmpg 21430 prmirred 21433 zndvds 21508 zringnrg 24725 zlmclm 25061 zclmncvs 25098 lgseisenlem4 27339 gsumzrsum 32999 zringnm 33935 |
| Copyright terms: Public domain | W3C validator |