Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-zring | Structured version Visualization version GIF version |
Description: The (unital) ring of integers. (Contributed by Alexander van der Vekens, 9-Jun-2019.) |
Ref | Expression |
---|---|
df-zring | ⊢ ℤring = (ℂfld ↾s ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zring 20582 | . 2 class ℤring | |
2 | ccnfld 20510 | . . 3 class ℂfld | |
3 | cz 12249 | . . 3 class ℤ | |
4 | cress 16867 | . . 3 class ↾s | |
5 | 2, 3, 4 | co 7255 | . 2 class (ℂfld ↾s ℤ) |
6 | 1, 5 | wceq 1539 | 1 wff ℤring = (ℂfld ↾s ℤ) |
Colors of variables: wff setvar class |
This definition is referenced by: zringcrng 20584 zringbas 20588 zringplusg 20589 zringmulg 20590 zringmulr 20591 zring0 20592 zring1 20593 zringlpirlem1 20596 zringunit 20600 zringcyg 20603 zringsubgval 20604 zringmpg 20605 prmirred 20608 zndvds 20669 zringnrg 23857 zlmclm 24181 zclmncvs 24217 lgseisenlem4 26431 zringnm 31810 |
Copyright terms: Public domain | W3C validator |