| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-zring | Structured version Visualization version GIF version | ||
| Description: The (unital) ring of integers. (Contributed by Alexander van der Vekens, 9-Jun-2019.) |
| Ref | Expression |
|---|---|
| df-zring | ⊢ ℤring = (ℂfld ↾s ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | czring 21363 | . 2 class ℤring | |
| 2 | ccnfld 21271 | . . 3 class ℂfld | |
| 3 | cz 12536 | . . 3 class ℤ | |
| 4 | cress 17207 | . . 3 class ↾s | |
| 5 | 2, 3, 4 | co 7390 | . 2 class (ℂfld ↾s ℤ) |
| 6 | 1, 5 | wceq 1540 | 1 wff ℤring = (ℂfld ↾s ℤ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: zringcrng 21365 zringbas 21370 zringplusg 21371 zringsub 21372 zringmulg 21373 zringmulr 21374 zring0 21375 zring1 21376 zringlpirlem1 21379 zringunit 21383 zringcyg 21386 zringsubgval 21387 zringmpg 21388 prmirred 21391 zndvds 21466 zringnrg 24683 zlmclm 25019 zclmncvs 25055 lgseisenlem4 27296 gsumzrsum 33006 zringnm 33955 |
| Copyright terms: Public domain | W3C validator |