Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-zring | Structured version Visualization version GIF version |
Description: The (unital) ring of integers. (Contributed by Alexander van der Vekens, 9-Jun-2019.) |
Ref | Expression |
---|---|
df-zring | ⊢ ℤring = (ℂfld ↾s ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | czring 20776 | . 2 class ℤring | |
2 | ccnfld 20703 | . . 3 class ℂfld | |
3 | cz 12420 | . . 3 class ℤ | |
4 | cress 17038 | . . 3 class ↾s | |
5 | 2, 3, 4 | co 7337 | . 2 class (ℂfld ↾s ℤ) |
6 | 1, 5 | wceq 1540 | 1 wff ℤring = (ℂfld ↾s ℤ) |
Colors of variables: wff setvar class |
This definition is referenced by: zringcrng 20778 zringbas 20782 zringplusg 20783 zringmulg 20784 zringmulr 20785 zring0 20786 zring1 20787 zringlpirlem1 20790 zringunit 20794 zringcyg 20797 zringsubgval 20798 zringmpg 20799 prmirred 20802 zndvds 20863 zringnrg 24057 zlmclm 24381 zclmncvs 24418 lgseisenlem4 26632 zringnm 32206 |
Copyright terms: Public domain | W3C validator |