![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-zring | Structured version Visualization version GIF version |
Description: The (unital) ring of integers. (Contributed by Alexander van der Vekens, 9-Jun-2019.) |
Ref | Expression |
---|---|
df-zring | ⊢ ℤring = (ℂfld ↾s ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | czring 21017 | . 2 class ℤring | |
2 | ccnfld 20944 | . . 3 class ℂfld | |
3 | cz 12558 | . . 3 class ℤ | |
4 | cress 17173 | . . 3 class ↾s | |
5 | 2, 3, 4 | co 7409 | . 2 class (ℂfld ↾s ℤ) |
6 | 1, 5 | wceq 1542 | 1 wff ℤring = (ℂfld ↾s ℤ) |
Colors of variables: wff setvar class |
This definition is referenced by: zringcrng 21019 zringbas 21023 zringplusg 21024 zringsub 21025 zringmulg 21026 zringmulr 21027 zring0 21028 zring1 21029 zringlpirlem1 21032 zringunit 21036 zringcyg 21039 zringsubgval 21040 zringmpg 21041 prmirred 21044 zndvds 21105 zringnrg 24304 zlmclm 24628 zclmncvs 24665 lgseisenlem4 26881 zringnm 32938 |
Copyright terms: Public domain | W3C validator |