MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-zring Structured version   Visualization version   GIF version

Definition df-zring 21382
Description: The (unital) ring of integers. (Contributed by Alexander van der Vekens, 9-Jun-2019.)
Assertion
Ref Expression
df-zring ring = (ℂflds ℤ)

Detailed syntax breakdown of Definition df-zring
StepHypRef Expression
1 czring 21381 . 2 class ring
2 ccnfld 21289 . . 3 class fld
3 cz 12465 . . 3 class
4 cress 17138 . . 3 class s
52, 3, 4co 7346 . 2 class (ℂflds ℤ)
61, 5wceq 1541 1 wff ring = (ℂflds ℤ)
Colors of variables: wff setvar class
This definition is referenced by:  zringcrng  21383  zringbas  21388  zringplusg  21389  zringsub  21390  zringmulg  21391  zringmulr  21392  zring0  21393  zring1  21394  zringlpirlem1  21397  zringunit  21401  zringcyg  21404  zringsubgval  21405  zringmpg  21406  prmirred  21409  zndvds  21484  zringnrg  24701  zlmclm  25037  zclmncvs  25073  lgseisenlem4  27314  gsumzrsum  33034  zringnm  33966
  Copyright terms: Public domain W3C validator