![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-zring | Structured version Visualization version GIF version |
Description: The (unital) ring of integers. (Contributed by Alexander van der Vekens, 9-Jun-2019.) |
Ref | Expression |
---|---|
df-zring | ⊢ ℤring = (ℂfld ↾s ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | czring 21480 | . 2 class ℤring | |
2 | ccnfld 21387 | . . 3 class ℂfld | |
3 | cz 12639 | . . 3 class ℤ | |
4 | cress 17287 | . . 3 class ↾s | |
5 | 2, 3, 4 | co 7448 | . 2 class (ℂfld ↾s ℤ) |
6 | 1, 5 | wceq 1537 | 1 wff ℤring = (ℂfld ↾s ℤ) |
Colors of variables: wff setvar class |
This definition is referenced by: zringcrng 21482 zringbas 21487 zringplusg 21488 zringsub 21489 zringmulg 21490 zringmulr 21491 zring0 21492 zring1 21493 zringlpirlem1 21496 zringunit 21500 zringcyg 21503 zringsubgval 21504 zringmpg 21505 prmirred 21508 zndvds 21591 zringnrg 24829 zlmclm 25164 zclmncvs 25201 lgseisenlem4 27440 zringnm 33904 |
Copyright terms: Public domain | W3C validator |