| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-zring | Structured version Visualization version GIF version | ||
| Description: The (unital) ring of integers. (Contributed by Alexander van der Vekens, 9-Jun-2019.) |
| Ref | Expression |
|---|---|
| df-zring | ⊢ ℤring = (ℂfld ↾s ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | czring 21381 | . 2 class ℤring | |
| 2 | ccnfld 21289 | . . 3 class ℂfld | |
| 3 | cz 12465 | . . 3 class ℤ | |
| 4 | cress 17138 | . . 3 class ↾s | |
| 5 | 2, 3, 4 | co 7346 | . 2 class (ℂfld ↾s ℤ) |
| 6 | 1, 5 | wceq 1541 | 1 wff ℤring = (ℂfld ↾s ℤ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: zringcrng 21383 zringbas 21388 zringplusg 21389 zringsub 21390 zringmulg 21391 zringmulr 21392 zring0 21393 zring1 21394 zringlpirlem1 21397 zringunit 21401 zringcyg 21404 zringsubgval 21405 zringmpg 21406 prmirred 21409 zndvds 21484 zringnrg 24701 zlmclm 25037 zclmncvs 25073 lgseisenlem4 27314 gsumzrsum 33034 zringnm 33966 |
| Copyright terms: Public domain | W3C validator |