Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-zring | Structured version Visualization version GIF version |
Description: The (unital) ring of integers. (Contributed by Alexander van der Vekens, 9-Jun-2019.) |
Ref | Expression |
---|---|
df-zring | ⊢ ℤring = (ℂfld ↾s ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | czring 20679 | . 2 class ℤring | |
2 | ccnfld 20606 | . . 3 class ℂfld | |
3 | cz 12328 | . . 3 class ℤ | |
4 | cress 16950 | . . 3 class ↾s | |
5 | 2, 3, 4 | co 7284 | . 2 class (ℂfld ↾s ℤ) |
6 | 1, 5 | wceq 1539 | 1 wff ℤring = (ℂfld ↾s ℤ) |
Colors of variables: wff setvar class |
This definition is referenced by: zringcrng 20681 zringbas 20685 zringplusg 20686 zringmulg 20687 zringmulr 20688 zring0 20689 zring1 20690 zringlpirlem1 20693 zringunit 20697 zringcyg 20700 zringsubgval 20701 zringmpg 20702 prmirred 20705 zndvds 20766 zringnrg 23960 zlmclm 24284 zclmncvs 24321 lgseisenlem4 26535 zringnm 31917 |
Copyright terms: Public domain | W3C validator |