| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-zring | Structured version Visualization version GIF version | ||
| Description: The (unital) ring of integers. (Contributed by Alexander van der Vekens, 9-Jun-2019.) |
| Ref | Expression |
|---|---|
| df-zring | ⊢ ℤring = (ℂfld ↾s ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | czring 21385 | . 2 class ℤring | |
| 2 | ccnfld 21293 | . . 3 class ℂfld | |
| 3 | cz 12475 | . . 3 class ℤ | |
| 4 | cress 17143 | . . 3 class ↾s | |
| 5 | 2, 3, 4 | co 7352 | . 2 class (ℂfld ↾s ℤ) |
| 6 | 1, 5 | wceq 1541 | 1 wff ℤring = (ℂfld ↾s ℤ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: zringcrng 21387 zringbas 21392 zringplusg 21393 zringsub 21394 zringmulg 21395 zringmulr 21396 zring0 21397 zring1 21398 zringlpirlem1 21401 zringunit 21405 zringcyg 21408 zringsubgval 21409 zringmpg 21410 prmirred 21413 zndvds 21488 zringnrg 24704 zlmclm 25040 zclmncvs 25076 lgseisenlem4 27317 gsumzrsum 33046 zringnm 33992 |
| Copyright terms: Public domain | W3C validator |