MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zringunit Structured version   Visualization version   GIF version

Theorem zringunit 20181
Description: The units of are the integers with norm 1, i.e. 1 and -1. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.)
Assertion
Ref Expression
zringunit (𝐴 ∈ (Unit‘ℤring) ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1))

Proof of Theorem zringunit
StepHypRef Expression
1 zringbas 20169 . . . 4 ℤ = (Base‘ℤring)
2 eqid 2798 . . . 4 (Unit‘ℤring) = (Unit‘ℤring)
31, 2unitcl 19405 . . 3 (𝐴 ∈ (Unit‘ℤring) → 𝐴 ∈ ℤ)
4 zsubrg 20144 . . . . . . 7 ℤ ∈ (SubRing‘ℂfld)
5 zgz 16259 . . . . . . . 8 (𝑥 ∈ ℤ → 𝑥 ∈ ℤ[i])
65ssriv 3919 . . . . . . 7 ℤ ⊆ ℤ[i]
7 gzsubrg 20145 . . . . . . . 8 ℤ[i] ∈ (SubRing‘ℂfld)
8 eqid 2798 . . . . . . . . 9 (ℂflds ℤ[i]) = (ℂflds ℤ[i])
98subsubrg 19554 . . . . . . . 8 (ℤ[i] ∈ (SubRing‘ℂfld) → (ℤ ∈ (SubRing‘(ℂflds ℤ[i])) ↔ (ℤ ∈ (SubRing‘ℂfld) ∧ ℤ ⊆ ℤ[i])))
107, 9ax-mp 5 . . . . . . 7 (ℤ ∈ (SubRing‘(ℂflds ℤ[i])) ↔ (ℤ ∈ (SubRing‘ℂfld) ∧ ℤ ⊆ ℤ[i]))
114, 6, 10mpbir2an 710 . . . . . 6 ℤ ∈ (SubRing‘(ℂflds ℤ[i]))
12 df-zring 20164 . . . . . . . 8 ring = (ℂflds ℤ)
13 ressabs 16555 . . . . . . . . 9 ((ℤ[i] ∈ (SubRing‘ℂfld) ∧ ℤ ⊆ ℤ[i]) → ((ℂflds ℤ[i]) ↾s ℤ) = (ℂflds ℤ))
147, 6, 13mp2an 691 . . . . . . . 8 ((ℂflds ℤ[i]) ↾s ℤ) = (ℂflds ℤ)
1512, 14eqtr4i 2824 . . . . . . 7 ring = ((ℂflds ℤ[i]) ↾s ℤ)
16 eqid 2798 . . . . . . 7 (Unit‘(ℂflds ℤ[i])) = (Unit‘(ℂflds ℤ[i]))
1715, 16, 2subrguss 19543 . . . . . 6 (ℤ ∈ (SubRing‘(ℂflds ℤ[i])) → (Unit‘ℤring) ⊆ (Unit‘(ℂflds ℤ[i])))
1811, 17ax-mp 5 . . . . 5 (Unit‘ℤring) ⊆ (Unit‘(ℂflds ℤ[i]))
1918sseli 3911 . . . 4 (𝐴 ∈ (Unit‘ℤring) → 𝐴 ∈ (Unit‘(ℂflds ℤ[i])))
208gzrngunit 20157 . . . . 5 (𝐴 ∈ (Unit‘(ℂflds ℤ[i])) ↔ (𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1))
2120simprbi 500 . . . 4 (𝐴 ∈ (Unit‘(ℂflds ℤ[i])) → (abs‘𝐴) = 1)
2219, 21syl 17 . . 3 (𝐴 ∈ (Unit‘ℤring) → (abs‘𝐴) = 1)
233, 22jca 515 . 2 (𝐴 ∈ (Unit‘ℤring) → (𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1))
24 zcn 11974 . . . . 5 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
2524adantr 484 . . . 4 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 𝐴 ∈ ℂ)
26 simpr 488 . . . . . 6 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → (abs‘𝐴) = 1)
27 ax-1ne0 10595 . . . . . . 7 1 ≠ 0
2827a1i 11 . . . . . 6 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 1 ≠ 0)
2926, 28eqnetrd 3054 . . . . 5 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → (abs‘𝐴) ≠ 0)
30 fveq2 6645 . . . . . . 7 (𝐴 = 0 → (abs‘𝐴) = (abs‘0))
31 abs0 14637 . . . . . . 7 (abs‘0) = 0
3230, 31eqtrdi 2849 . . . . . 6 (𝐴 = 0 → (abs‘𝐴) = 0)
3332necon3i 3019 . . . . 5 ((abs‘𝐴) ≠ 0 → 𝐴 ≠ 0)
3429, 33syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 𝐴 ≠ 0)
35 eldifsn 4680 . . . 4 (𝐴 ∈ (ℂ ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
3625, 34, 35sylanbrc 586 . . 3 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 𝐴 ∈ (ℂ ∖ {0}))
37 simpl 486 . . 3 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 𝐴 ∈ ℤ)
38 cnfldinv 20122 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((invr‘ℂfld)‘𝐴) = (1 / 𝐴))
3925, 34, 38syl2anc 587 . . . . 5 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((invr‘ℂfld)‘𝐴) = (1 / 𝐴))
40 zre 11973 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
4140adantr 484 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 𝐴 ∈ ℝ)
42 absresq 14654 . . . . . . . 8 (𝐴 ∈ ℝ → ((abs‘𝐴)↑2) = (𝐴↑2))
4341, 42syl 17 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = (𝐴↑2))
4426oveq1d 7150 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = (1↑2))
45 sq1 13554 . . . . . . . 8 (1↑2) = 1
4644, 45eqtrdi 2849 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = 1)
4725sqvald 13503 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → (𝐴↑2) = (𝐴 · 𝐴))
4843, 46, 473eqtr3rd 2842 . . . . . 6 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → (𝐴 · 𝐴) = 1)
49 1cnd 10625 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 1 ∈ ℂ)
5049, 25, 25, 34divmuld 11427 . . . . . 6 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((1 / 𝐴) = 𝐴 ↔ (𝐴 · 𝐴) = 1))
5148, 50mpbird 260 . . . . 5 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → (1 / 𝐴) = 𝐴)
5239, 51eqtrd 2833 . . . 4 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((invr‘ℂfld)‘𝐴) = 𝐴)
5352, 37eqeltrd 2890 . . 3 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((invr‘ℂfld)‘𝐴) ∈ ℤ)
54 cnfldbas 20095 . . . . . 6 ℂ = (Base‘ℂfld)
55 cnfld0 20115 . . . . . 6 0 = (0g‘ℂfld)
56 cndrng 20120 . . . . . 6 fld ∈ DivRing
5754, 55, 56drngui 19501 . . . . 5 (ℂ ∖ {0}) = (Unit‘ℂfld)
58 eqid 2798 . . . . 5 (invr‘ℂfld) = (invr‘ℂfld)
5912, 57, 2, 58subrgunit 19546 . . . 4 (ℤ ∈ (SubRing‘ℂfld) → (𝐴 ∈ (Unit‘ℤring) ↔ (𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐴 ∈ ℤ ∧ ((invr‘ℂfld)‘𝐴) ∈ ℤ)))
604, 59ax-mp 5 . . 3 (𝐴 ∈ (Unit‘ℤring) ↔ (𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐴 ∈ ℤ ∧ ((invr‘ℂfld)‘𝐴) ∈ ℤ))
6136, 37, 53, 60syl3anbrc 1340 . 2 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 𝐴 ∈ (Unit‘ℤring))
6223, 61impbii 212 1 (𝐴 ∈ (Unit‘ℤring) ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  cdif 3878  wss 3881  {csn 4525  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   · cmul 10531   / cdiv 11286  2c2 11680  cz 11969  cexp 13425  abscabs 14585  ℤ[i]cgz 16255  s cress 16476  Unitcui 19385  invrcinvr 19417  SubRingcsubrg 19524  fldccnfld 20091  ringzring 20163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-fz 12886  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-gz 16256  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-subg 18268  df-cmn 18900  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-drng 19497  df-subrg 19526  df-cnfld 20092  df-zring 20164
This theorem is referenced by:  zringndrg  20183  prmirredlem  20186  qqhval2lem  31332
  Copyright terms: Public domain W3C validator