MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zringunit Structured version   Visualization version   GIF version

Theorem zringunit 21028
Description: The units of β„€ are the integers with norm 1, i.e. 1 and -1. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.)
Assertion
Ref Expression
zringunit (𝐴 ∈ (Unitβ€˜β„€ring) ↔ (𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1))

Proof of Theorem zringunit
StepHypRef Expression
1 zringbas 21016 . . . 4 β„€ = (Baseβ€˜β„€ring)
2 eqid 2733 . . . 4 (Unitβ€˜β„€ring) = (Unitβ€˜β„€ring)
31, 2unitcl 20182 . . 3 (𝐴 ∈ (Unitβ€˜β„€ring) β†’ 𝐴 ∈ β„€)
4 zsubrg 20991 . . . . . . 7 β„€ ∈ (SubRingβ€˜β„‚fld)
5 zgz 16863 . . . . . . . 8 (π‘₯ ∈ β„€ β†’ π‘₯ ∈ β„€[i])
65ssriv 3986 . . . . . . 7 β„€ βŠ† β„€[i]
7 gzsubrg 20992 . . . . . . . 8 β„€[i] ∈ (SubRingβ€˜β„‚fld)
8 eqid 2733 . . . . . . . . 9 (β„‚fld β†Ύs β„€[i]) = (β„‚fld β†Ύs β„€[i])
98subsubrg 20383 . . . . . . . 8 (β„€[i] ∈ (SubRingβ€˜β„‚fld) β†’ (β„€ ∈ (SubRingβ€˜(β„‚fld β†Ύs β„€[i])) ↔ (β„€ ∈ (SubRingβ€˜β„‚fld) ∧ β„€ βŠ† β„€[i])))
107, 9ax-mp 5 . . . . . . 7 (β„€ ∈ (SubRingβ€˜(β„‚fld β†Ύs β„€[i])) ↔ (β„€ ∈ (SubRingβ€˜β„‚fld) ∧ β„€ βŠ† β„€[i]))
114, 6, 10mpbir2an 710 . . . . . 6 β„€ ∈ (SubRingβ€˜(β„‚fld β†Ύs β„€[i]))
12 df-zring 21011 . . . . . . . 8 β„€ring = (β„‚fld β†Ύs β„€)
13 ressabs 17191 . . . . . . . . 9 ((β„€[i] ∈ (SubRingβ€˜β„‚fld) ∧ β„€ βŠ† β„€[i]) β†’ ((β„‚fld β†Ύs β„€[i]) β†Ύs β„€) = (β„‚fld β†Ύs β„€))
147, 6, 13mp2an 691 . . . . . . . 8 ((β„‚fld β†Ύs β„€[i]) β†Ύs β„€) = (β„‚fld β†Ύs β„€)
1512, 14eqtr4i 2764 . . . . . . 7 β„€ring = ((β„‚fld β†Ύs β„€[i]) β†Ύs β„€)
16 eqid 2733 . . . . . . 7 (Unitβ€˜(β„‚fld β†Ύs β„€[i])) = (Unitβ€˜(β„‚fld β†Ύs β„€[i]))
1715, 16, 2subrguss 20371 . . . . . 6 (β„€ ∈ (SubRingβ€˜(β„‚fld β†Ύs β„€[i])) β†’ (Unitβ€˜β„€ring) βŠ† (Unitβ€˜(β„‚fld β†Ύs β„€[i])))
1811, 17ax-mp 5 . . . . 5 (Unitβ€˜β„€ring) βŠ† (Unitβ€˜(β„‚fld β†Ύs β„€[i]))
1918sseli 3978 . . . 4 (𝐴 ∈ (Unitβ€˜β„€ring) β†’ 𝐴 ∈ (Unitβ€˜(β„‚fld β†Ύs β„€[i])))
208gzrngunit 21004 . . . . 5 (𝐴 ∈ (Unitβ€˜(β„‚fld β†Ύs β„€[i])) ↔ (𝐴 ∈ β„€[i] ∧ (absβ€˜π΄) = 1))
2120simprbi 498 . . . 4 (𝐴 ∈ (Unitβ€˜(β„‚fld β†Ύs β„€[i])) β†’ (absβ€˜π΄) = 1)
2219, 21syl 17 . . 3 (𝐴 ∈ (Unitβ€˜β„€ring) β†’ (absβ€˜π΄) = 1)
233, 22jca 513 . 2 (𝐴 ∈ (Unitβ€˜β„€ring) β†’ (𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1))
24 zcn 12560 . . . . 5 (𝐴 ∈ β„€ β†’ 𝐴 ∈ β„‚)
2524adantr 482 . . . 4 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ 𝐴 ∈ β„‚)
26 simpr 486 . . . . . 6 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ (absβ€˜π΄) = 1)
27 ax-1ne0 11176 . . . . . . 7 1 β‰  0
2827a1i 11 . . . . . 6 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ 1 β‰  0)
2926, 28eqnetrd 3009 . . . . 5 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ (absβ€˜π΄) β‰  0)
30 fveq2 6889 . . . . . . 7 (𝐴 = 0 β†’ (absβ€˜π΄) = (absβ€˜0))
31 abs0 15229 . . . . . . 7 (absβ€˜0) = 0
3230, 31eqtrdi 2789 . . . . . 6 (𝐴 = 0 β†’ (absβ€˜π΄) = 0)
3332necon3i 2974 . . . . 5 ((absβ€˜π΄) β‰  0 β†’ 𝐴 β‰  0)
3429, 33syl 17 . . . 4 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ 𝐴 β‰  0)
35 eldifsn 4790 . . . 4 (𝐴 ∈ (β„‚ βˆ– {0}) ↔ (𝐴 ∈ β„‚ ∧ 𝐴 β‰  0))
3625, 34, 35sylanbrc 584 . . 3 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ 𝐴 ∈ (β„‚ βˆ– {0}))
37 simpl 484 . . 3 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ 𝐴 ∈ β„€)
38 cnfldinv 20969 . . . . . 6 ((𝐴 ∈ β„‚ ∧ 𝐴 β‰  0) β†’ ((invrβ€˜β„‚fld)β€˜π΄) = (1 / 𝐴))
3925, 34, 38syl2anc 585 . . . . 5 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ ((invrβ€˜β„‚fld)β€˜π΄) = (1 / 𝐴))
40 zre 12559 . . . . . . . . 9 (𝐴 ∈ β„€ β†’ 𝐴 ∈ ℝ)
4140adantr 482 . . . . . . . 8 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ 𝐴 ∈ ℝ)
42 absresq 15246 . . . . . . . 8 (𝐴 ∈ ℝ β†’ ((absβ€˜π΄)↑2) = (𝐴↑2))
4341, 42syl 17 . . . . . . 7 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ ((absβ€˜π΄)↑2) = (𝐴↑2))
4426oveq1d 7421 . . . . . . . 8 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ ((absβ€˜π΄)↑2) = (1↑2))
45 sq1 14156 . . . . . . . 8 (1↑2) = 1
4644, 45eqtrdi 2789 . . . . . . 7 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ ((absβ€˜π΄)↑2) = 1)
4725sqvald 14105 . . . . . . 7 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ (𝐴↑2) = (𝐴 Β· 𝐴))
4843, 46, 473eqtr3rd 2782 . . . . . 6 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ (𝐴 Β· 𝐴) = 1)
49 1cnd 11206 . . . . . . 7 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ 1 ∈ β„‚)
5049, 25, 25, 34divmuld 12009 . . . . . 6 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ ((1 / 𝐴) = 𝐴 ↔ (𝐴 Β· 𝐴) = 1))
5148, 50mpbird 257 . . . . 5 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ (1 / 𝐴) = 𝐴)
5239, 51eqtrd 2773 . . . 4 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ ((invrβ€˜β„‚fld)β€˜π΄) = 𝐴)
5352, 37eqeltrd 2834 . . 3 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ ((invrβ€˜β„‚fld)β€˜π΄) ∈ β„€)
54 cnfldbas 20941 . . . . . 6 β„‚ = (Baseβ€˜β„‚fld)
55 cnfld0 20962 . . . . . 6 0 = (0gβ€˜β„‚fld)
56 cndrng 20967 . . . . . 6 β„‚fld ∈ DivRing
5754, 55, 56drngui 20314 . . . . 5 (β„‚ βˆ– {0}) = (Unitβ€˜β„‚fld)
58 eqid 2733 . . . . 5 (invrβ€˜β„‚fld) = (invrβ€˜β„‚fld)
5912, 57, 2, 58subrgunit 20374 . . . 4 (β„€ ∈ (SubRingβ€˜β„‚fld) β†’ (𝐴 ∈ (Unitβ€˜β„€ring) ↔ (𝐴 ∈ (β„‚ βˆ– {0}) ∧ 𝐴 ∈ β„€ ∧ ((invrβ€˜β„‚fld)β€˜π΄) ∈ β„€)))
604, 59ax-mp 5 . . 3 (𝐴 ∈ (Unitβ€˜β„€ring) ↔ (𝐴 ∈ (β„‚ βˆ– {0}) ∧ 𝐴 ∈ β„€ ∧ ((invrβ€˜β„‚fld)β€˜π΄) ∈ β„€))
6136, 37, 53, 60syl3anbrc 1344 . 2 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ 𝐴 ∈ (Unitβ€˜β„€ring))
6223, 61impbii 208 1 (𝐴 ∈ (Unitβ€˜β„€ring) ↔ (𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2941   βˆ– cdif 3945   βŠ† wss 3948  {csn 4628  β€˜cfv 6541  (class class class)co 7406  β„‚cc 11105  β„cr 11106  0cc0 11107  1c1 11108   Β· cmul 11112   / cdiv 11868  2c2 12264  β„€cz 12555  β†‘cexp 14024  abscabs 15178  β„€[i]cgz 16859   β†Ύs cress 17170  Unitcui 20162  invrcinvr 20194  SubRingcsubrg 20352  β„‚fldccnfld 20937  β„€ringczring 21010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185  ax-addf 11186  ax-mulf 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-1st 7972  df-2nd 7973  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-1o 8463  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-sup 9434  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-rp 12972  df-fz 13482  df-seq 13964  df-exp 14025  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-gz 16860  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17142  df-ress 17171  df-plusg 17207  df-mulr 17208  df-starv 17209  df-tset 17213  df-ple 17214  df-ds 17216  df-unif 17217  df-0g 17384  df-mgm 18558  df-sgrp 18607  df-mnd 18623  df-grp 18819  df-minusg 18820  df-subg 18998  df-cmn 19645  df-mgp 19983  df-ur 20000  df-ring 20052  df-cring 20053  df-oppr 20143  df-dvdsr 20164  df-unit 20165  df-invr 20195  df-dvr 20208  df-drng 20310  df-subrg 20354  df-cnfld 20938  df-zring 21011
This theorem is referenced by:  zringndrg  21030  prmirredlem  21034  qqhval2lem  32950
  Copyright terms: Public domain W3C validator