Proof of Theorem zringunit
Step | Hyp | Ref
| Expression |
1 | | zringbas 20676 |
. . . 4
⊢ ℤ =
(Base‘ℤring) |
2 | | eqid 2738 |
. . . 4
⊢
(Unit‘ℤring) =
(Unit‘ℤring) |
3 | 1, 2 | unitcl 19901 |
. . 3
⊢ (𝐴 ∈
(Unit‘ℤring) → 𝐴 ∈ ℤ) |
4 | | zsubrg 20651 |
. . . . . . 7
⊢ ℤ
∈ (SubRing‘ℂfld) |
5 | | zgz 16634 |
. . . . . . . 8
⊢ (𝑥 ∈ ℤ → 𝑥 ∈
ℤ[i]) |
6 | 5 | ssriv 3925 |
. . . . . . 7
⊢ ℤ
⊆ ℤ[i] |
7 | | gzsubrg 20652 |
. . . . . . . 8
⊢
ℤ[i] ∈ (SubRing‘ℂfld) |
8 | | eqid 2738 |
. . . . . . . . 9
⊢
(ℂfld ↾s ℤ[i]) =
(ℂfld ↾s ℤ[i]) |
9 | 8 | subsubrg 20050 |
. . . . . . . 8
⊢
(ℤ[i] ∈ (SubRing‘ℂfld) → (ℤ
∈ (SubRing‘(ℂfld ↾s ℤ[i]))
↔ (ℤ ∈ (SubRing‘ℂfld) ∧ ℤ
⊆ ℤ[i]))) |
10 | 7, 9 | ax-mp 5 |
. . . . . . 7
⊢ (ℤ
∈ (SubRing‘(ℂfld ↾s ℤ[i]))
↔ (ℤ ∈ (SubRing‘ℂfld) ∧ ℤ
⊆ ℤ[i])) |
11 | 4, 6, 10 | mpbir2an 708 |
. . . . . 6
⊢ ℤ
∈ (SubRing‘(ℂfld ↾s
ℤ[i])) |
12 | | df-zring 20671 |
. . . . . . . 8
⊢
ℤring = (ℂfld ↾s
ℤ) |
13 | | ressabs 16959 |
. . . . . . . . 9
⊢
((ℤ[i] ∈ (SubRing‘ℂfld) ∧ ℤ
⊆ ℤ[i]) → ((ℂfld ↾s
ℤ[i]) ↾s ℤ) = (ℂfld
↾s ℤ)) |
14 | 7, 6, 13 | mp2an 689 |
. . . . . . . 8
⊢
((ℂfld ↾s ℤ[i])
↾s ℤ) = (ℂfld ↾s
ℤ) |
15 | 12, 14 | eqtr4i 2769 |
. . . . . . 7
⊢
ℤring = ((ℂfld ↾s
ℤ[i]) ↾s ℤ) |
16 | | eqid 2738 |
. . . . . . 7
⊢
(Unit‘(ℂfld ↾s ℤ[i])) =
(Unit‘(ℂfld ↾s
ℤ[i])) |
17 | 15, 16, 2 | subrguss 20039 |
. . . . . 6
⊢ (ℤ
∈ (SubRing‘(ℂfld ↾s ℤ[i]))
→ (Unit‘ℤring) ⊆
(Unit‘(ℂfld ↾s
ℤ[i]))) |
18 | 11, 17 | ax-mp 5 |
. . . . 5
⊢
(Unit‘ℤring) ⊆
(Unit‘(ℂfld ↾s
ℤ[i])) |
19 | 18 | sseli 3917 |
. . . 4
⊢ (𝐴 ∈
(Unit‘ℤring) → 𝐴 ∈ (Unit‘(ℂfld
↾s ℤ[i]))) |
20 | 8 | gzrngunit 20664 |
. . . . 5
⊢ (𝐴 ∈
(Unit‘(ℂfld ↾s ℤ[i])) ↔
(𝐴 ∈ ℤ[i] ∧
(abs‘𝐴) =
1)) |
21 | 20 | simprbi 497 |
. . . 4
⊢ (𝐴 ∈
(Unit‘(ℂfld ↾s ℤ[i])) →
(abs‘𝐴) =
1) |
22 | 19, 21 | syl 17 |
. . 3
⊢ (𝐴 ∈
(Unit‘ℤring) → (abs‘𝐴) = 1) |
23 | 3, 22 | jca 512 |
. 2
⊢ (𝐴 ∈
(Unit‘ℤring) → (𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1)) |
24 | | zcn 12324 |
. . . . 5
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℂ) |
25 | 24 | adantr 481 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧
(abs‘𝐴) = 1) →
𝐴 ∈
ℂ) |
26 | | simpr 485 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧
(abs‘𝐴) = 1) →
(abs‘𝐴) =
1) |
27 | | ax-1ne0 10940 |
. . . . . . 7
⊢ 1 ≠
0 |
28 | 27 | a1i 11 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧
(abs‘𝐴) = 1) → 1
≠ 0) |
29 | 26, 28 | eqnetrd 3011 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧
(abs‘𝐴) = 1) →
(abs‘𝐴) ≠
0) |
30 | | fveq2 6774 |
. . . . . . 7
⊢ (𝐴 = 0 → (abs‘𝐴) =
(abs‘0)) |
31 | | abs0 14997 |
. . . . . . 7
⊢
(abs‘0) = 0 |
32 | 30, 31 | eqtrdi 2794 |
. . . . . 6
⊢ (𝐴 = 0 → (abs‘𝐴) = 0) |
33 | 32 | necon3i 2976 |
. . . . 5
⊢
((abs‘𝐴) ≠
0 → 𝐴 ≠
0) |
34 | 29, 33 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧
(abs‘𝐴) = 1) →
𝐴 ≠ 0) |
35 | | eldifsn 4720 |
. . . 4
⊢ (𝐴 ∈ (ℂ ∖ {0})
↔ (𝐴 ∈ ℂ
∧ 𝐴 ≠
0)) |
36 | 25, 34, 35 | sylanbrc 583 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧
(abs‘𝐴) = 1) →
𝐴 ∈ (ℂ ∖
{0})) |
37 | | simpl 483 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧
(abs‘𝐴) = 1) →
𝐴 ∈
ℤ) |
38 | | cnfldinv 20629 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
((invr‘ℂfld)‘𝐴) = (1 / 𝐴)) |
39 | 25, 34, 38 | syl2anc 584 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧
(abs‘𝐴) = 1) →
((invr‘ℂfld)‘𝐴) = (1 / 𝐴)) |
40 | | zre 12323 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℝ) |
41 | 40 | adantr 481 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧
(abs‘𝐴) = 1) →
𝐴 ∈
ℝ) |
42 | | absresq 15014 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ →
((abs‘𝐴)↑2) =
(𝐴↑2)) |
43 | 41, 42 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧
(abs‘𝐴) = 1) →
((abs‘𝐴)↑2) =
(𝐴↑2)) |
44 | 26 | oveq1d 7290 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧
(abs‘𝐴) = 1) →
((abs‘𝐴)↑2) =
(1↑2)) |
45 | | sq1 13912 |
. . . . . . . 8
⊢
(1↑2) = 1 |
46 | 44, 45 | eqtrdi 2794 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧
(abs‘𝐴) = 1) →
((abs‘𝐴)↑2) =
1) |
47 | 25 | sqvald 13861 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧
(abs‘𝐴) = 1) →
(𝐴↑2) = (𝐴 · 𝐴)) |
48 | 43, 46, 47 | 3eqtr3rd 2787 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧
(abs‘𝐴) = 1) →
(𝐴 · 𝐴) = 1) |
49 | | 1cnd 10970 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧
(abs‘𝐴) = 1) → 1
∈ ℂ) |
50 | 49, 25, 25, 34 | divmuld 11773 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧
(abs‘𝐴) = 1) →
((1 / 𝐴) = 𝐴 ↔ (𝐴 · 𝐴) = 1)) |
51 | 48, 50 | mpbird 256 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧
(abs‘𝐴) = 1) →
(1 / 𝐴) = 𝐴) |
52 | 39, 51 | eqtrd 2778 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧
(abs‘𝐴) = 1) →
((invr‘ℂfld)‘𝐴) = 𝐴) |
53 | 52, 37 | eqeltrd 2839 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧
(abs‘𝐴) = 1) →
((invr‘ℂfld)‘𝐴) ∈ ℤ) |
54 | | cnfldbas 20601 |
. . . . . 6
⊢ ℂ =
(Base‘ℂfld) |
55 | | cnfld0 20622 |
. . . . . 6
⊢ 0 =
(0g‘ℂfld) |
56 | | cndrng 20627 |
. . . . . 6
⊢
ℂfld ∈ DivRing |
57 | 54, 55, 56 | drngui 19997 |
. . . . 5
⊢ (ℂ
∖ {0}) = (Unit‘ℂfld) |
58 | | eqid 2738 |
. . . . 5
⊢
(invr‘ℂfld) =
(invr‘ℂfld) |
59 | 12, 57, 2, 58 | subrgunit 20042 |
. . . 4
⊢ (ℤ
∈ (SubRing‘ℂfld) → (𝐴 ∈ (Unit‘ℤring)
↔ (𝐴 ∈ (ℂ
∖ {0}) ∧ 𝐴 ∈
ℤ ∧ ((invr‘ℂfld)‘𝐴) ∈
ℤ))) |
60 | 4, 59 | ax-mp 5 |
. . 3
⊢ (𝐴 ∈
(Unit‘ℤring) ↔ (𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐴 ∈ ℤ ∧
((invr‘ℂfld)‘𝐴) ∈ ℤ)) |
61 | 36, 37, 53, 60 | syl3anbrc 1342 |
. 2
⊢ ((𝐴 ∈ ℤ ∧
(abs‘𝐴) = 1) →
𝐴 ∈
(Unit‘ℤring)) |
62 | 23, 61 | impbii 208 |
1
⊢ (𝐴 ∈
(Unit‘ℤring) ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1)) |