MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zringunit Structured version   Visualization version   GIF version

Theorem zringunit 21042
Description: The units of β„€ are the integers with norm 1, i.e. 1 and -1. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.)
Assertion
Ref Expression
zringunit (𝐴 ∈ (Unitβ€˜β„€ring) ↔ (𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1))

Proof of Theorem zringunit
StepHypRef Expression
1 zringbas 21029 . . . 4 β„€ = (Baseβ€˜β„€ring)
2 eqid 2732 . . . 4 (Unitβ€˜β„€ring) = (Unitβ€˜β„€ring)
31, 2unitcl 20193 . . 3 (𝐴 ∈ (Unitβ€˜β„€ring) β†’ 𝐴 ∈ β„€)
4 zsubrg 21004 . . . . . . 7 β„€ ∈ (SubRingβ€˜β„‚fld)
5 zgz 16868 . . . . . . . 8 (π‘₯ ∈ β„€ β†’ π‘₯ ∈ β„€[i])
65ssriv 3986 . . . . . . 7 β„€ βŠ† β„€[i]
7 gzsubrg 21005 . . . . . . . 8 β„€[i] ∈ (SubRingβ€˜β„‚fld)
8 eqid 2732 . . . . . . . . 9 (β„‚fld β†Ύs β„€[i]) = (β„‚fld β†Ύs β„€[i])
98subsubrg 20349 . . . . . . . 8 (β„€[i] ∈ (SubRingβ€˜β„‚fld) β†’ (β„€ ∈ (SubRingβ€˜(β„‚fld β†Ύs β„€[i])) ↔ (β„€ ∈ (SubRingβ€˜β„‚fld) ∧ β„€ βŠ† β„€[i])))
107, 9ax-mp 5 . . . . . . 7 (β„€ ∈ (SubRingβ€˜(β„‚fld β†Ύs β„€[i])) ↔ (β„€ ∈ (SubRingβ€˜β„‚fld) ∧ β„€ βŠ† β„€[i]))
114, 6, 10mpbir2an 709 . . . . . 6 β„€ ∈ (SubRingβ€˜(β„‚fld β†Ύs β„€[i]))
12 df-zring 21024 . . . . . . . 8 β„€ring = (β„‚fld β†Ύs β„€)
13 ressabs 17196 . . . . . . . . 9 ((β„€[i] ∈ (SubRingβ€˜β„‚fld) ∧ β„€ βŠ† β„€[i]) β†’ ((β„‚fld β†Ύs β„€[i]) β†Ύs β„€) = (β„‚fld β†Ύs β„€))
147, 6, 13mp2an 690 . . . . . . . 8 ((β„‚fld β†Ύs β„€[i]) β†Ύs β„€) = (β„‚fld β†Ύs β„€)
1512, 14eqtr4i 2763 . . . . . . 7 β„€ring = ((β„‚fld β†Ύs β„€[i]) β†Ύs β„€)
16 eqid 2732 . . . . . . 7 (Unitβ€˜(β„‚fld β†Ύs β„€[i])) = (Unitβ€˜(β„‚fld β†Ύs β„€[i]))
1715, 16, 2subrguss 20338 . . . . . 6 (β„€ ∈ (SubRingβ€˜(β„‚fld β†Ύs β„€[i])) β†’ (Unitβ€˜β„€ring) βŠ† (Unitβ€˜(β„‚fld β†Ύs β„€[i])))
1811, 17ax-mp 5 . . . . 5 (Unitβ€˜β„€ring) βŠ† (Unitβ€˜(β„‚fld β†Ύs β„€[i]))
1918sseli 3978 . . . 4 (𝐴 ∈ (Unitβ€˜β„€ring) β†’ 𝐴 ∈ (Unitβ€˜(β„‚fld β†Ύs β„€[i])))
208gzrngunit 21017 . . . . 5 (𝐴 ∈ (Unitβ€˜(β„‚fld β†Ύs β„€[i])) ↔ (𝐴 ∈ β„€[i] ∧ (absβ€˜π΄) = 1))
2120simprbi 497 . . . 4 (𝐴 ∈ (Unitβ€˜(β„‚fld β†Ύs β„€[i])) β†’ (absβ€˜π΄) = 1)
2219, 21syl 17 . . 3 (𝐴 ∈ (Unitβ€˜β„€ring) β†’ (absβ€˜π΄) = 1)
233, 22jca 512 . 2 (𝐴 ∈ (Unitβ€˜β„€ring) β†’ (𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1))
24 zcn 12565 . . . . 5 (𝐴 ∈ β„€ β†’ 𝐴 ∈ β„‚)
2524adantr 481 . . . 4 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ 𝐴 ∈ β„‚)
26 simpr 485 . . . . . 6 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ (absβ€˜π΄) = 1)
27 ax-1ne0 11181 . . . . . . 7 1 β‰  0
2827a1i 11 . . . . . 6 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ 1 β‰  0)
2926, 28eqnetrd 3008 . . . . 5 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ (absβ€˜π΄) β‰  0)
30 fveq2 6891 . . . . . . 7 (𝐴 = 0 β†’ (absβ€˜π΄) = (absβ€˜0))
31 abs0 15234 . . . . . . 7 (absβ€˜0) = 0
3230, 31eqtrdi 2788 . . . . . 6 (𝐴 = 0 β†’ (absβ€˜π΄) = 0)
3332necon3i 2973 . . . . 5 ((absβ€˜π΄) β‰  0 β†’ 𝐴 β‰  0)
3429, 33syl 17 . . . 4 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ 𝐴 β‰  0)
35 eldifsn 4790 . . . 4 (𝐴 ∈ (β„‚ βˆ– {0}) ↔ (𝐴 ∈ β„‚ ∧ 𝐴 β‰  0))
3625, 34, 35sylanbrc 583 . . 3 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ 𝐴 ∈ (β„‚ βˆ– {0}))
37 simpl 483 . . 3 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ 𝐴 ∈ β„€)
38 cnfldinv 20982 . . . . . 6 ((𝐴 ∈ β„‚ ∧ 𝐴 β‰  0) β†’ ((invrβ€˜β„‚fld)β€˜π΄) = (1 / 𝐴))
3925, 34, 38syl2anc 584 . . . . 5 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ ((invrβ€˜β„‚fld)β€˜π΄) = (1 / 𝐴))
40 zre 12564 . . . . . . . . 9 (𝐴 ∈ β„€ β†’ 𝐴 ∈ ℝ)
4140adantr 481 . . . . . . . 8 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ 𝐴 ∈ ℝ)
42 absresq 15251 . . . . . . . 8 (𝐴 ∈ ℝ β†’ ((absβ€˜π΄)↑2) = (𝐴↑2))
4341, 42syl 17 . . . . . . 7 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ ((absβ€˜π΄)↑2) = (𝐴↑2))
4426oveq1d 7426 . . . . . . . 8 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ ((absβ€˜π΄)↑2) = (1↑2))
45 sq1 14161 . . . . . . . 8 (1↑2) = 1
4644, 45eqtrdi 2788 . . . . . . 7 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ ((absβ€˜π΄)↑2) = 1)
4725sqvald 14110 . . . . . . 7 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ (𝐴↑2) = (𝐴 Β· 𝐴))
4843, 46, 473eqtr3rd 2781 . . . . . 6 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ (𝐴 Β· 𝐴) = 1)
49 1cnd 11211 . . . . . . 7 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ 1 ∈ β„‚)
5049, 25, 25, 34divmuld 12014 . . . . . 6 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ ((1 / 𝐴) = 𝐴 ↔ (𝐴 Β· 𝐴) = 1))
5148, 50mpbird 256 . . . . 5 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ (1 / 𝐴) = 𝐴)
5239, 51eqtrd 2772 . . . 4 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ ((invrβ€˜β„‚fld)β€˜π΄) = 𝐴)
5352, 37eqeltrd 2833 . . 3 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ ((invrβ€˜β„‚fld)β€˜π΄) ∈ β„€)
54 cnfldbas 20954 . . . . . 6 β„‚ = (Baseβ€˜β„‚fld)
55 cnfld0 20975 . . . . . 6 0 = (0gβ€˜β„‚fld)
56 cndrng 20980 . . . . . 6 β„‚fld ∈ DivRing
5754, 55, 56drngui 20367 . . . . 5 (β„‚ βˆ– {0}) = (Unitβ€˜β„‚fld)
58 eqid 2732 . . . . 5 (invrβ€˜β„‚fld) = (invrβ€˜β„‚fld)
5912, 57, 2, 58subrgunit 20341 . . . 4 (β„€ ∈ (SubRingβ€˜β„‚fld) β†’ (𝐴 ∈ (Unitβ€˜β„€ring) ↔ (𝐴 ∈ (β„‚ βˆ– {0}) ∧ 𝐴 ∈ β„€ ∧ ((invrβ€˜β„‚fld)β€˜π΄) ∈ β„€)))
604, 59ax-mp 5 . . 3 (𝐴 ∈ (Unitβ€˜β„€ring) ↔ (𝐴 ∈ (β„‚ βˆ– {0}) ∧ 𝐴 ∈ β„€ ∧ ((invrβ€˜β„‚fld)β€˜π΄) ∈ β„€))
6136, 37, 53, 60syl3anbrc 1343 . 2 ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ 𝐴 ∈ (Unitβ€˜β„€ring))
6223, 61impbii 208 1 (𝐴 ∈ (Unitβ€˜β„€ring) ↔ (𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   βˆ– cdif 3945   βŠ† wss 3948  {csn 4628  β€˜cfv 6543  (class class class)co 7411  β„‚cc 11110  β„cr 11111  0cc0 11112  1c1 11113   Β· cmul 11117   / cdiv 11873  2c2 12269  β„€cz 12560  β†‘cexp 14029  abscabs 15183  β„€[i]cgz 16864   β†Ύs cress 17175  Unitcui 20173  invrcinvr 20205  SubRingcsubrg 20319  β„‚fldccnfld 20950  β„€ringczring 21023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191  ax-mulf 11192
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-tpos 8213  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-div 11874  df-nn 12215  df-2 12277  df-3 12278  df-4 12279  df-5 12280  df-6 12281  df-7 12282  df-8 12283  df-9 12284  df-n0 12475  df-z 12561  df-dec 12680  df-uz 12825  df-rp 12977  df-fz 13487  df-seq 13969  df-exp 14030  df-cj 15048  df-re 15049  df-im 15050  df-sqrt 15184  df-abs 15185  df-gz 16865  df-struct 17082  df-sets 17099  df-slot 17117  df-ndx 17129  df-base 17147  df-ress 17176  df-plusg 17212  df-mulr 17213  df-starv 17214  df-tset 17218  df-ple 17219  df-ds 17221  df-unif 17222  df-0g 17389  df-mgm 18563  df-sgrp 18612  df-mnd 18628  df-grp 18824  df-minusg 18825  df-subg 19005  df-cmn 19652  df-mgp 19990  df-ur 20007  df-ring 20060  df-cring 20061  df-oppr 20154  df-dvdsr 20175  df-unit 20176  df-invr 20206  df-dvr 20219  df-subrg 20321  df-drng 20363  df-cnfld 20951  df-zring 21024
This theorem is referenced by:  zringndrg  21044  prmirredlem  21048  qqhval2lem  33030
  Copyright terms: Public domain W3C validator