MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zringunit Structured version   Visualization version   GIF version

Theorem zringunit 21376
Description: The units of are the integers with norm 1, i.e. 1 and -1. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.)
Assertion
Ref Expression
zringunit (𝐴 ∈ (Unit‘ℤring) ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1))

Proof of Theorem zringunit
StepHypRef Expression
1 zringbas 21363 . . . 4 ℤ = (Base‘ℤring)
2 eqid 2729 . . . 4 (Unit‘ℤring) = (Unit‘ℤring)
31, 2unitcl 20284 . . 3 (𝐴 ∈ (Unit‘ℤring) → 𝐴 ∈ ℤ)
4 zsubrg 21337 . . . . . . 7 ℤ ∈ (SubRing‘ℂfld)
5 zgz 16904 . . . . . . . 8 (𝑥 ∈ ℤ → 𝑥 ∈ ℤ[i])
65ssriv 3950 . . . . . . 7 ℤ ⊆ ℤ[i]
7 gzsubrg 21338 . . . . . . . 8 ℤ[i] ∈ (SubRing‘ℂfld)
8 eqid 2729 . . . . . . . . 9 (ℂflds ℤ[i]) = (ℂflds ℤ[i])
98subsubrg 20507 . . . . . . . 8 (ℤ[i] ∈ (SubRing‘ℂfld) → (ℤ ∈ (SubRing‘(ℂflds ℤ[i])) ↔ (ℤ ∈ (SubRing‘ℂfld) ∧ ℤ ⊆ ℤ[i])))
107, 9ax-mp 5 . . . . . . 7 (ℤ ∈ (SubRing‘(ℂflds ℤ[i])) ↔ (ℤ ∈ (SubRing‘ℂfld) ∧ ℤ ⊆ ℤ[i]))
114, 6, 10mpbir2an 711 . . . . . 6 ℤ ∈ (SubRing‘(ℂflds ℤ[i]))
12 df-zring 21357 . . . . . . . 8 ring = (ℂflds ℤ)
13 ressabs 17218 . . . . . . . . 9 ((ℤ[i] ∈ (SubRing‘ℂfld) ∧ ℤ ⊆ ℤ[i]) → ((ℂflds ℤ[i]) ↾s ℤ) = (ℂflds ℤ))
147, 6, 13mp2an 692 . . . . . . . 8 ((ℂflds ℤ[i]) ↾s ℤ) = (ℂflds ℤ)
1512, 14eqtr4i 2755 . . . . . . 7 ring = ((ℂflds ℤ[i]) ↾s ℤ)
16 eqid 2729 . . . . . . 7 (Unit‘(ℂflds ℤ[i])) = (Unit‘(ℂflds ℤ[i]))
1715, 16, 2subrguss 20496 . . . . . 6 (ℤ ∈ (SubRing‘(ℂflds ℤ[i])) → (Unit‘ℤring) ⊆ (Unit‘(ℂflds ℤ[i])))
1811, 17ax-mp 5 . . . . 5 (Unit‘ℤring) ⊆ (Unit‘(ℂflds ℤ[i]))
1918sseli 3942 . . . 4 (𝐴 ∈ (Unit‘ℤring) → 𝐴 ∈ (Unit‘(ℂflds ℤ[i])))
208gzrngunit 21350 . . . . 5 (𝐴 ∈ (Unit‘(ℂflds ℤ[i])) ↔ (𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1))
2120simprbi 496 . . . 4 (𝐴 ∈ (Unit‘(ℂflds ℤ[i])) → (abs‘𝐴) = 1)
2219, 21syl 17 . . 3 (𝐴 ∈ (Unit‘ℤring) → (abs‘𝐴) = 1)
233, 22jca 511 . 2 (𝐴 ∈ (Unit‘ℤring) → (𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1))
24 zcn 12534 . . . . 5 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
2524adantr 480 . . . 4 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 𝐴 ∈ ℂ)
26 simpr 484 . . . . . 6 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → (abs‘𝐴) = 1)
27 ax-1ne0 11137 . . . . . . 7 1 ≠ 0
2827a1i 11 . . . . . 6 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 1 ≠ 0)
2926, 28eqnetrd 2992 . . . . 5 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → (abs‘𝐴) ≠ 0)
30 fveq2 6858 . . . . . . 7 (𝐴 = 0 → (abs‘𝐴) = (abs‘0))
31 abs0 15251 . . . . . . 7 (abs‘0) = 0
3230, 31eqtrdi 2780 . . . . . 6 (𝐴 = 0 → (abs‘𝐴) = 0)
3332necon3i 2957 . . . . 5 ((abs‘𝐴) ≠ 0 → 𝐴 ≠ 0)
3429, 33syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 𝐴 ≠ 0)
35 eldifsn 4750 . . . 4 (𝐴 ∈ (ℂ ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
3625, 34, 35sylanbrc 583 . . 3 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 𝐴 ∈ (ℂ ∖ {0}))
37 simpl 482 . . 3 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 𝐴 ∈ ℤ)
38 cnfldinv 21314 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((invr‘ℂfld)‘𝐴) = (1 / 𝐴))
3925, 34, 38syl2anc 584 . . . . 5 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((invr‘ℂfld)‘𝐴) = (1 / 𝐴))
40 zre 12533 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
4140adantr 480 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 𝐴 ∈ ℝ)
42 absresq 15268 . . . . . . . 8 (𝐴 ∈ ℝ → ((abs‘𝐴)↑2) = (𝐴↑2))
4341, 42syl 17 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = (𝐴↑2))
4426oveq1d 7402 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = (1↑2))
45 sq1 14160 . . . . . . . 8 (1↑2) = 1
4644, 45eqtrdi 2780 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = 1)
4725sqvald 14108 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → (𝐴↑2) = (𝐴 · 𝐴))
4843, 46, 473eqtr3rd 2773 . . . . . 6 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → (𝐴 · 𝐴) = 1)
49 1cnd 11169 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 1 ∈ ℂ)
5049, 25, 25, 34divmuld 11980 . . . . . 6 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((1 / 𝐴) = 𝐴 ↔ (𝐴 · 𝐴) = 1))
5148, 50mpbird 257 . . . . 5 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → (1 / 𝐴) = 𝐴)
5239, 51eqtrd 2764 . . . 4 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((invr‘ℂfld)‘𝐴) = 𝐴)
5352, 37eqeltrd 2828 . . 3 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((invr‘ℂfld)‘𝐴) ∈ ℤ)
54 cnfldbas 21268 . . . . . 6 ℂ = (Base‘ℂfld)
55 cnfld0 21304 . . . . . 6 0 = (0g‘ℂfld)
56 cndrng 21310 . . . . . 6 fld ∈ DivRing
5754, 55, 56drngui 20644 . . . . 5 (ℂ ∖ {0}) = (Unit‘ℂfld)
58 eqid 2729 . . . . 5 (invr‘ℂfld) = (invr‘ℂfld)
5912, 57, 2, 58subrgunit 20499 . . . 4 (ℤ ∈ (SubRing‘ℂfld) → (𝐴 ∈ (Unit‘ℤring) ↔ (𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐴 ∈ ℤ ∧ ((invr‘ℂfld)‘𝐴) ∈ ℤ)))
604, 59ax-mp 5 . . 3 (𝐴 ∈ (Unit‘ℤring) ↔ (𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐴 ∈ ℤ ∧ ((invr‘ℂfld)‘𝐴) ∈ ℤ))
6136, 37, 53, 60syl3anbrc 1344 . 2 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 𝐴 ∈ (Unit‘ℤring))
6223, 61impbii 209 1 (𝐴 ∈ (Unit‘ℤring) ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3911  wss 3914  {csn 4589  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   · cmul 11073   / cdiv 11835  2c2 12241  cz 12529  cexp 14026  abscabs 15200  ℤ[i]cgz 16900  s cress 17200  Unitcui 20264  invrcinvr 20296  SubRingcsubrg 20478  fldccnfld 21264  ringczring 21356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-fz 13469  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-gz 16901  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-subg 19055  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-subrng 20455  df-subrg 20479  df-drng 20640  df-cnfld 21265  df-zring 21357
This theorem is referenced by:  zringndrg  21378  prmirredlem  21382  qqhval2lem  33971
  Copyright terms: Public domain W3C validator