MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zringunit Structured version   Visualization version   GIF version

Theorem zringunit 20623
Description: The units of are the integers with norm 1, i.e. 1 and -1. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.)
Assertion
Ref Expression
zringunit (𝐴 ∈ (Unit‘ℤring) ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1))

Proof of Theorem zringunit
StepHypRef Expression
1 zringbas 20611 . . . 4 ℤ = (Base‘ℤring)
2 eqid 2824 . . . 4 (Unit‘ℤring) = (Unit‘ℤring)
31, 2unitcl 19400 . . 3 (𝐴 ∈ (Unit‘ℤring) → 𝐴 ∈ ℤ)
4 zsubrg 20586 . . . . . . 7 ℤ ∈ (SubRing‘ℂfld)
5 zgz 16258 . . . . . . . 8 (𝑥 ∈ ℤ → 𝑥 ∈ ℤ[i])
65ssriv 3955 . . . . . . 7 ℤ ⊆ ℤ[i]
7 gzsubrg 20587 . . . . . . . 8 ℤ[i] ∈ (SubRing‘ℂfld)
8 eqid 2824 . . . . . . . . 9 (ℂflds ℤ[i]) = (ℂflds ℤ[i])
98subsubrg 19549 . . . . . . . 8 (ℤ[i] ∈ (SubRing‘ℂfld) → (ℤ ∈ (SubRing‘(ℂflds ℤ[i])) ↔ (ℤ ∈ (SubRing‘ℂfld) ∧ ℤ ⊆ ℤ[i])))
107, 9ax-mp 5 . . . . . . 7 (ℤ ∈ (SubRing‘(ℂflds ℤ[i])) ↔ (ℤ ∈ (SubRing‘ℂfld) ∧ ℤ ⊆ ℤ[i]))
114, 6, 10mpbir2an 710 . . . . . 6 ℤ ∈ (SubRing‘(ℂflds ℤ[i]))
12 df-zring 20606 . . . . . . . 8 ring = (ℂflds ℤ)
13 ressabs 16554 . . . . . . . . 9 ((ℤ[i] ∈ (SubRing‘ℂfld) ∧ ℤ ⊆ ℤ[i]) → ((ℂflds ℤ[i]) ↾s ℤ) = (ℂflds ℤ))
147, 6, 13mp2an 691 . . . . . . . 8 ((ℂflds ℤ[i]) ↾s ℤ) = (ℂflds ℤ)
1512, 14eqtr4i 2850 . . . . . . 7 ring = ((ℂflds ℤ[i]) ↾s ℤ)
16 eqid 2824 . . . . . . 7 (Unit‘(ℂflds ℤ[i])) = (Unit‘(ℂflds ℤ[i]))
1715, 16, 2subrguss 19538 . . . . . 6 (ℤ ∈ (SubRing‘(ℂflds ℤ[i])) → (Unit‘ℤring) ⊆ (Unit‘(ℂflds ℤ[i])))
1811, 17ax-mp 5 . . . . 5 (Unit‘ℤring) ⊆ (Unit‘(ℂflds ℤ[i]))
1918sseli 3947 . . . 4 (𝐴 ∈ (Unit‘ℤring) → 𝐴 ∈ (Unit‘(ℂflds ℤ[i])))
208gzrngunit 20599 . . . . 5 (𝐴 ∈ (Unit‘(ℂflds ℤ[i])) ↔ (𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1))
2120simprbi 500 . . . 4 (𝐴 ∈ (Unit‘(ℂflds ℤ[i])) → (abs‘𝐴) = 1)
2219, 21syl 17 . . 3 (𝐴 ∈ (Unit‘ℤring) → (abs‘𝐴) = 1)
233, 22jca 515 . 2 (𝐴 ∈ (Unit‘ℤring) → (𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1))
24 zcn 11974 . . . . 5 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
2524adantr 484 . . . 4 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 𝐴 ∈ ℂ)
26 simpr 488 . . . . . 6 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → (abs‘𝐴) = 1)
27 ax-1ne0 10593 . . . . . . 7 1 ≠ 0
2827a1i 11 . . . . . 6 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 1 ≠ 0)
2926, 28eqnetrd 3080 . . . . 5 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → (abs‘𝐴) ≠ 0)
30 fveq2 6653 . . . . . . 7 (𝐴 = 0 → (abs‘𝐴) = (abs‘0))
31 abs0 14636 . . . . . . 7 (abs‘0) = 0
3230, 31syl6eq 2875 . . . . . 6 (𝐴 = 0 → (abs‘𝐴) = 0)
3332necon3i 3045 . . . . 5 ((abs‘𝐴) ≠ 0 → 𝐴 ≠ 0)
3429, 33syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 𝐴 ≠ 0)
35 eldifsn 4702 . . . 4 (𝐴 ∈ (ℂ ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
3625, 34, 35sylanbrc 586 . . 3 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 𝐴 ∈ (ℂ ∖ {0}))
37 simpl 486 . . 3 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 𝐴 ∈ ℤ)
38 cnfldinv 20564 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((invr‘ℂfld)‘𝐴) = (1 / 𝐴))
3925, 34, 38syl2anc 587 . . . . 5 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((invr‘ℂfld)‘𝐴) = (1 / 𝐴))
40 zre 11973 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
4140adantr 484 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 𝐴 ∈ ℝ)
42 absresq 14653 . . . . . . . 8 (𝐴 ∈ ℝ → ((abs‘𝐴)↑2) = (𝐴↑2))
4341, 42syl 17 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = (𝐴↑2))
4426oveq1d 7155 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = (1↑2))
45 sq1 13554 . . . . . . . 8 (1↑2) = 1
4644, 45syl6eq 2875 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = 1)
4725sqvald 13503 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → (𝐴↑2) = (𝐴 · 𝐴))
4843, 46, 473eqtr3rd 2868 . . . . . 6 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → (𝐴 · 𝐴) = 1)
49 1cnd 10623 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 1 ∈ ℂ)
5049, 25, 25, 34divmuld 11425 . . . . . 6 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((1 / 𝐴) = 𝐴 ↔ (𝐴 · 𝐴) = 1))
5148, 50mpbird 260 . . . . 5 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → (1 / 𝐴) = 𝐴)
5239, 51eqtrd 2859 . . . 4 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((invr‘ℂfld)‘𝐴) = 𝐴)
5352, 37eqeltrd 2916 . . 3 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((invr‘ℂfld)‘𝐴) ∈ ℤ)
54 cnfldbas 20537 . . . . . 6 ℂ = (Base‘ℂfld)
55 cnfld0 20557 . . . . . 6 0 = (0g‘ℂfld)
56 cndrng 20562 . . . . . 6 fld ∈ DivRing
5754, 55, 56drngui 19496 . . . . 5 (ℂ ∖ {0}) = (Unit‘ℂfld)
58 eqid 2824 . . . . 5 (invr‘ℂfld) = (invr‘ℂfld)
5912, 57, 2, 58subrgunit 19541 . . . 4 (ℤ ∈ (SubRing‘ℂfld) → (𝐴 ∈ (Unit‘ℤring) ↔ (𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐴 ∈ ℤ ∧ ((invr‘ℂfld)‘𝐴) ∈ ℤ)))
604, 59ax-mp 5 . . 3 (𝐴 ∈ (Unit‘ℤring) ↔ (𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐴 ∈ ℤ ∧ ((invr‘ℂfld)‘𝐴) ∈ ℤ))
6136, 37, 53, 60syl3anbrc 1340 . 2 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 𝐴 ∈ (Unit‘ℤring))
6223, 61impbii 212 1 (𝐴 ∈ (Unit‘ℤring) ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3013  cdif 3915  wss 3918  {csn 4548  cfv 6338  (class class class)co 7140  cc 10522  cr 10523  0cc0 10524  1c1 10525   · cmul 10529   / cdiv 11284  2c2 11680  cz 11969  cexp 13425  abscabs 14584  ℤ[i]cgz 16254  s cress 16475  Unitcui 19380  invrcinvr 19412  SubRingcsubrg 19519  fldccnfld 20533  ringzring 20605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5173  ax-sep 5186  ax-nul 5193  ax-pow 5249  ax-pr 5313  ax-un 7446  ax-cnex 10580  ax-resscn 10581  ax-1cn 10582  ax-icn 10583  ax-addcl 10584  ax-addrcl 10585  ax-mulcl 10586  ax-mulrcl 10587  ax-mulcom 10588  ax-addass 10589  ax-mulass 10590  ax-distr 10591  ax-i2m1 10592  ax-1ne0 10593  ax-1rid 10594  ax-rnegex 10595  ax-rrecex 10596  ax-cnre 10597  ax-pre-lttri 10598  ax-pre-lttrn 10599  ax-pre-ltadd 10600  ax-pre-mulgt0 10601  ax-pre-sup 10602  ax-addf 10603  ax-mulf 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4822  df-int 4860  df-iun 4904  df-br 5050  df-opab 5112  df-mpt 5130  df-tr 5156  df-id 5443  df-eprel 5448  df-po 5457  df-so 5458  df-fr 5497  df-we 5499  df-xp 5544  df-rel 5545  df-cnv 5546  df-co 5547  df-dm 5548  df-rn 5549  df-res 5550  df-ima 5551  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6297  df-fun 6340  df-fn 6341  df-f 6342  df-f1 6343  df-fo 6344  df-f1o 6345  df-fv 6346  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7674  df-2nd 7675  df-tpos 7877  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-oadd 8091  df-er 8274  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-sup 8892  df-pnf 10664  df-mnf 10665  df-xr 10666  df-ltxr 10667  df-le 10668  df-sub 10859  df-neg 10860  df-div 11285  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-fz 12886  df-seq 13365  df-exp 13426  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-gz 16255  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-mulr 16570  df-starv 16571  df-tset 16575  df-ple 16576  df-ds 16578  df-unif 16579  df-0g 16706  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-grp 18097  df-minusg 18098  df-subg 18267  df-cmn 18899  df-mgp 19231  df-ur 19243  df-ring 19290  df-cring 19291  df-oppr 19364  df-dvdsr 19382  df-unit 19383  df-invr 19413  df-dvr 19424  df-drng 19492  df-subrg 19521  df-cnfld 20534  df-zring 20606
This theorem is referenced by:  zringndrg  20625  prmirredlem  20628  qqhval2lem  31242
  Copyright terms: Public domain W3C validator