MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zndvds Structured version   Visualization version   GIF version

Theorem zndvds 20698
Description: Express equality of equivalence classes in ℤ / 𝑛 in terms of divisibility. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
zncyg.y 𝑌 = (ℤ/nℤ‘𝑁)
zndvds.2 𝐿 = (ℤRHom‘𝑌)
Assertion
Ref Expression
zndvds ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐿𝐴) = (𝐿𝐵) ↔ 𝑁 ∥ (𝐴𝐵)))

Proof of Theorem zndvds
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqcom 2830 . 2 ((𝐿𝐴) = (𝐿𝐵) ↔ (𝐿𝐵) = (𝐿𝐴))
2 eqid 2823 . . . . . 6 (RSpan‘ℤring) = (RSpan‘ℤring)
3 eqid 2823 . . . . . 6 (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) = (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))
4 zncyg.y . . . . . 6 𝑌 = (ℤ/nℤ‘𝑁)
5 zndvds.2 . . . . . 6 𝐿 = (ℤRHom‘𝑌)
62, 3, 4, 5znzrhval 20695 . . . . 5 ((𝑁 ∈ ℕ0𝐵 ∈ ℤ) → (𝐿𝐵) = [𝐵](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
763adant2 1127 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐿𝐵) = [𝐵](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
82, 3, 4, 5znzrhval 20695 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (𝐿𝐴) = [𝐴](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
983adant3 1128 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐿𝐴) = [𝐴](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
107, 9eqeq12d 2839 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐿𝐵) = (𝐿𝐴) ↔ [𝐵](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) = [𝐴](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))
11 zringring 20622 . . . . . 6 ring ∈ Ring
12 nn0z 12008 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
13123ad2ant1 1129 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝑁 ∈ ℤ)
1413snssd 4744 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑁} ⊆ ℤ)
15 zringbas 20625 . . . . . . . 8 ℤ = (Base‘ℤring)
16 eqid 2823 . . . . . . . 8 (LIdeal‘ℤring) = (LIdeal‘ℤring)
172, 15, 16rspcl 19997 . . . . . . 7 ((ℤring ∈ Ring ∧ {𝑁} ⊆ ℤ) → ((RSpan‘ℤring)‘{𝑁}) ∈ (LIdeal‘ℤring))
1811, 14, 17sylancr 589 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((RSpan‘ℤring)‘{𝑁}) ∈ (LIdeal‘ℤring))
1916lidlsubg 19990 . . . . . 6 ((ℤring ∈ Ring ∧ ((RSpan‘ℤring)‘{𝑁}) ∈ (LIdeal‘ℤring)) → ((RSpan‘ℤring)‘{𝑁}) ∈ (SubGrp‘ℤring))
2011, 18, 19sylancr 589 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((RSpan‘ℤring)‘{𝑁}) ∈ (SubGrp‘ℤring))
2115, 3eqger 18332 . . . . 5 (((RSpan‘ℤring)‘{𝑁}) ∈ (SubGrp‘ℤring) → (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) Er ℤ)
2220, 21syl 17 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) Er ℤ)
23 simp3 1134 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ)
2422, 23erth 8340 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵(ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))𝐴 ↔ [𝐵](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) = [𝐴](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))
25 zringabl 20623 . . . . 5 ring ∈ Abel
2615, 16lidlss 19985 . . . . . 6 (((RSpan‘ℤring)‘{𝑁}) ∈ (LIdeal‘ℤring) → ((RSpan‘ℤring)‘{𝑁}) ⊆ ℤ)
2718, 26syl 17 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((RSpan‘ℤring)‘{𝑁}) ⊆ ℤ)
28 eqid 2823 . . . . . 6 (-g‘ℤring) = (-g‘ℤring)
2915, 28, 3eqgabl 18957 . . . . 5 ((ℤring ∈ Abel ∧ ((RSpan‘ℤring)‘{𝑁}) ⊆ ℤ) → (𝐵(ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))𝐴 ↔ (𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}))))
3025, 27, 29sylancr 589 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵(ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))𝐴 ↔ (𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}))))
31 simp2 1133 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ)
3223, 31jca 514 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ))
3332biantrurd 535 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}) ↔ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}))))
34 df-3an 1085 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁})) ↔ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁})))
3533, 34syl6bbr 291 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}) ↔ (𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}))))
36 zsubrg 20600 . . . . . . . . 9 ℤ ∈ (SubRing‘ℂfld)
37 subrgsubg 19543 . . . . . . . . 9 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubGrp‘ℂfld))
3836, 37mp1i 13 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ℤ ∈ (SubGrp‘ℂfld))
39 cnfldsub 20575 . . . . . . . . 9 − = (-g‘ℂfld)
40 df-zring 20620 . . . . . . . . 9 ring = (ℂflds ℤ)
4139, 40, 28subgsub 18293 . . . . . . . 8 ((ℤ ∈ (SubGrp‘ℂfld) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) = (𝐴(-g‘ℤring)𝐵))
4238, 41syld3an1 1406 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) = (𝐴(-g‘ℤring)𝐵))
4342eqcomd 2829 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴(-g‘ℤring)𝐵) = (𝐴𝐵))
44 dvdsrzring 20632 . . . . . . . 8 ∥ = (∥r‘ℤring)
4515, 2, 44rspsn 20029 . . . . . . 7 ((ℤring ∈ Ring ∧ 𝑁 ∈ ℤ) → ((RSpan‘ℤring)‘{𝑁}) = {𝑥𝑁𝑥})
4611, 13, 45sylancr 589 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((RSpan‘ℤring)‘{𝑁}) = {𝑥𝑁𝑥})
4743, 46eleq12d 2909 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}) ↔ (𝐴𝐵) ∈ {𝑥𝑁𝑥}))
48 ovex 7191 . . . . . 6 (𝐴𝐵) ∈ V
49 breq2 5072 . . . . . 6 (𝑥 = (𝐴𝐵) → (𝑁𝑥𝑁 ∥ (𝐴𝐵)))
5048, 49elab 3669 . . . . 5 ((𝐴𝐵) ∈ {𝑥𝑁𝑥} ↔ 𝑁 ∥ (𝐴𝐵))
5147, 50syl6bb 289 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}) ↔ 𝑁 ∥ (𝐴𝐵)))
5230, 35, 513bitr2d 309 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵(ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))𝐴𝑁 ∥ (𝐴𝐵)))
5310, 24, 523bitr2d 309 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐿𝐵) = (𝐿𝐴) ↔ 𝑁 ∥ (𝐴𝐵)))
541, 53syl5bb 285 1 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐿𝐴) = (𝐿𝐵) ↔ 𝑁 ∥ (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  {cab 2801  wss 3938  {csn 4569   class class class wbr 5068  cfv 6357  (class class class)co 7158   Er wer 8288  [cec 8289  cmin 10872  0cn0 11900  cz 11984  cdvds 15609  -gcsg 18107  SubGrpcsubg 18275   ~QG cqg 18277  Abelcabl 18909  Ringcrg 19299  SubRingcsubrg 19533  LIdealclidl 19944  RSpancrsp 19945  fldccnfld 20547  ringzring 20619  ℤRHomczrh 20649  ℤ/nczn 20652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-tpos 7894  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-ec 8293  df-qs 8297  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-seq 13373  df-dvds 15610  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-0g 16717  df-imas 16783  df-qus 16784  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-grp 18108  df-minusg 18109  df-sbg 18110  df-mulg 18227  df-subg 18278  df-nsg 18279  df-eqg 18280  df-ghm 18358  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-cring 19302  df-oppr 19375  df-dvdsr 19393  df-rnghom 19469  df-subrg 19535  df-lmod 19638  df-lss 19706  df-lsp 19746  df-sra 19946  df-rgmod 19947  df-lidl 19948  df-rsp 19949  df-2idl 20007  df-cnfld 20548  df-zring 20620  df-zrh 20653  df-zn 20656
This theorem is referenced by:  zndvds0  20699  znf1o  20700  znunit  20712  cygznlem1  20715  lgsqrlem1  25924  lgsqrlem2  25925  lgsqrlem4  25927  lgsdchrval  25932  lgseisenlem3  25955  lgseisenlem4  25956  dchrisumlem1  26067  dirith  26107
  Copyright terms: Public domain W3C validator