MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zndvds Structured version   Visualization version   GIF version

Theorem zndvds 20757
Description: Express equality of equivalence classes in ℤ / 𝑛 in terms of divisibility. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
zncyg.y 𝑌 = (ℤ/nℤ‘𝑁)
zndvds.2 𝐿 = (ℤRHom‘𝑌)
Assertion
Ref Expression
zndvds ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐿𝐴) = (𝐿𝐵) ↔ 𝑁 ∥ (𝐴𝐵)))

Proof of Theorem zndvds
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqcom 2745 . 2 ((𝐿𝐴) = (𝐿𝐵) ↔ (𝐿𝐵) = (𝐿𝐴))
2 eqid 2738 . . . . . 6 (RSpan‘ℤring) = (RSpan‘ℤring)
3 eqid 2738 . . . . . 6 (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) = (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))
4 zncyg.y . . . . . 6 𝑌 = (ℤ/nℤ‘𝑁)
5 zndvds.2 . . . . . 6 𝐿 = (ℤRHom‘𝑌)
62, 3, 4, 5znzrhval 20754 . . . . 5 ((𝑁 ∈ ℕ0𝐵 ∈ ℤ) → (𝐿𝐵) = [𝐵](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
763adant2 1130 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐿𝐵) = [𝐵](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
82, 3, 4, 5znzrhval 20754 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (𝐿𝐴) = [𝐴](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
983adant3 1131 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐿𝐴) = [𝐴](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
107, 9eqeq12d 2754 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐿𝐵) = (𝐿𝐴) ↔ [𝐵](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) = [𝐴](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))
11 zringring 20673 . . . . . 6 ring ∈ Ring
12 nn0z 12343 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
13123ad2ant1 1132 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝑁 ∈ ℤ)
1413snssd 4742 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑁} ⊆ ℤ)
15 zringbas 20676 . . . . . . . 8 ℤ = (Base‘ℤring)
16 eqid 2738 . . . . . . . 8 (LIdeal‘ℤring) = (LIdeal‘ℤring)
172, 15, 16rspcl 20493 . . . . . . 7 ((ℤring ∈ Ring ∧ {𝑁} ⊆ ℤ) → ((RSpan‘ℤring)‘{𝑁}) ∈ (LIdeal‘ℤring))
1811, 14, 17sylancr 587 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((RSpan‘ℤring)‘{𝑁}) ∈ (LIdeal‘ℤring))
1916lidlsubg 20486 . . . . . 6 ((ℤring ∈ Ring ∧ ((RSpan‘ℤring)‘{𝑁}) ∈ (LIdeal‘ℤring)) → ((RSpan‘ℤring)‘{𝑁}) ∈ (SubGrp‘ℤring))
2011, 18, 19sylancr 587 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((RSpan‘ℤring)‘{𝑁}) ∈ (SubGrp‘ℤring))
2115, 3eqger 18806 . . . . 5 (((RSpan‘ℤring)‘{𝑁}) ∈ (SubGrp‘ℤring) → (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) Er ℤ)
2220, 21syl 17 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) Er ℤ)
23 simp3 1137 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ)
2422, 23erth 8547 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵(ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))𝐴 ↔ [𝐵](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) = [𝐴](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))
25 zringabl 20674 . . . . 5 ring ∈ Abel
2615, 16lidlss 20481 . . . . . 6 (((RSpan‘ℤring)‘{𝑁}) ∈ (LIdeal‘ℤring) → ((RSpan‘ℤring)‘{𝑁}) ⊆ ℤ)
2718, 26syl 17 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((RSpan‘ℤring)‘{𝑁}) ⊆ ℤ)
28 eqid 2738 . . . . . 6 (-g‘ℤring) = (-g‘ℤring)
2915, 28, 3eqgabl 19436 . . . . 5 ((ℤring ∈ Abel ∧ ((RSpan‘ℤring)‘{𝑁}) ⊆ ℤ) → (𝐵(ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))𝐴 ↔ (𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}))))
3025, 27, 29sylancr 587 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵(ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))𝐴 ↔ (𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}))))
31 simp2 1136 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ)
3223, 31jca 512 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ))
3332biantrurd 533 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}) ↔ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}))))
34 df-3an 1088 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁})) ↔ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁})))
3533, 34bitr4di 289 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}) ↔ (𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}))))
36 zsubrg 20651 . . . . . . . . 9 ℤ ∈ (SubRing‘ℂfld)
37 subrgsubg 20030 . . . . . . . . 9 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubGrp‘ℂfld))
3836, 37mp1i 13 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ℤ ∈ (SubGrp‘ℂfld))
39 cnfldsub 20626 . . . . . . . . 9 − = (-g‘ℂfld)
40 df-zring 20671 . . . . . . . . 9 ring = (ℂflds ℤ)
4139, 40, 28subgsub 18767 . . . . . . . 8 ((ℤ ∈ (SubGrp‘ℂfld) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) = (𝐴(-g‘ℤring)𝐵))
4238, 41syld3an1 1409 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) = (𝐴(-g‘ℤring)𝐵))
4342eqcomd 2744 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴(-g‘ℤring)𝐵) = (𝐴𝐵))
44 dvdsrzring 20683 . . . . . . . 8 ∥ = (∥r‘ℤring)
4515, 2, 44rspsn 20525 . . . . . . 7 ((ℤring ∈ Ring ∧ 𝑁 ∈ ℤ) → ((RSpan‘ℤring)‘{𝑁}) = {𝑥𝑁𝑥})
4611, 13, 45sylancr 587 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((RSpan‘ℤring)‘{𝑁}) = {𝑥𝑁𝑥})
4743, 46eleq12d 2833 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}) ↔ (𝐴𝐵) ∈ {𝑥𝑁𝑥}))
48 ovex 7308 . . . . . 6 (𝐴𝐵) ∈ V
49 breq2 5078 . . . . . 6 (𝑥 = (𝐴𝐵) → (𝑁𝑥𝑁 ∥ (𝐴𝐵)))
5048, 49elab 3609 . . . . 5 ((𝐴𝐵) ∈ {𝑥𝑁𝑥} ↔ 𝑁 ∥ (𝐴𝐵))
5147, 50bitrdi 287 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}) ↔ 𝑁 ∥ (𝐴𝐵)))
5230, 35, 513bitr2d 307 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵(ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))𝐴𝑁 ∥ (𝐴𝐵)))
5310, 24, 523bitr2d 307 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐿𝐵) = (𝐿𝐴) ↔ 𝑁 ∥ (𝐴𝐵)))
541, 53bitrid 282 1 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐿𝐴) = (𝐿𝐵) ↔ 𝑁 ∥ (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  {cab 2715  wss 3887  {csn 4561   class class class wbr 5074  cfv 6433  (class class class)co 7275   Er wer 8495  [cec 8496  cmin 11205  0cn0 12233  cz 12319  cdvds 15963  -gcsg 18579  SubGrpcsubg 18749   ~QG cqg 18751  Abelcabl 19387  Ringcrg 19783  SubRingcsubrg 20020  LIdealclidl 20432  RSpancrsp 20433  fldccnfld 20597  ringczring 20670  ℤRHomczrh 20701  ℤ/nczn 20704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-seq 13722  df-dvds 15964  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-0g 17152  df-imas 17219  df-qus 17220  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-nsg 18753  df-eqg 18754  df-ghm 18832  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-rnghom 19959  df-subrg 20022  df-lmod 20125  df-lss 20194  df-lsp 20234  df-sra 20434  df-rgmod 20435  df-lidl 20436  df-rsp 20437  df-2idl 20503  df-cnfld 20598  df-zring 20671  df-zrh 20705  df-zn 20708
This theorem is referenced by:  zndvds0  20758  znf1o  20759  znunit  20771  cygznlem1  20774  lgsqrlem1  26494  lgsqrlem2  26495  lgsqrlem4  26497  lgsdchrval  26502  lgseisenlem3  26525  lgseisenlem4  26526  dchrisumlem1  26637  dirith  26677
  Copyright terms: Public domain W3C validator