![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zringmulr | Structured version Visualization version GIF version |
Description: The multiplication operation of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.) |
Ref | Expression |
---|---|
zringmulr | ⊢ · = (.r‘ℤring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zex 12605 | . 2 ⊢ ℤ ∈ V | |
2 | df-zring 21407 | . . 3 ⊢ ℤring = (ℂfld ↾s ℤ) | |
3 | cnfldmul 21321 | . . 3 ⊢ · = (.r‘ℂfld) | |
4 | 2, 3 | ressmulr 17307 | . 2 ⊢ (ℤ ∈ V → · = (.r‘ℤring)) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ · = (.r‘ℤring) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 Vcvv 3461 ‘cfv 6549 · cmul 11150 ℤcz 12596 .rcmulr 17253 ℂfldccnfld 21313 ℤringczring 21406 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 ax-mulf 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-fz 13525 df-struct 17135 df-sets 17152 df-slot 17170 df-ndx 17182 df-base 17200 df-ress 17229 df-plusg 17265 df-mulr 17266 df-starv 17267 df-tset 17271 df-ple 17272 df-ds 17274 df-unif 17275 df-cnfld 21314 df-zring 21407 |
This theorem is referenced by: dvdsrzring 21421 zringlpirlem3 21424 prmirredlem 21432 mulgrhm 21437 pzriprnglem5 21445 pzriprnglem6 21446 pzriprnglem8 21448 pzriprnglem12 21452 pzriprng1ALT 21456 zlmlmod 21486 domnchr 21496 znfld 21528 znidomb 21529 znunit 21531 znrrg 21533 dchrzrhmul 27244 lgsdchr 27353 lgseisenlem3 27375 lgseisenlem4 27376 zringidom 33384 zringfrac 33387 mdetpmtr1 33575 mdetpmtr12 33577 qqhval2lem 33733 qqhghm 33740 qqhrhm 33741 mzpmfp 42314 2zlidl 47493 zlmodzxzscm 47612 |
Copyright terms: Public domain | W3C validator |