MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmirred Structured version   Visualization version   GIF version

Theorem prmirred 20116
Description: The irreducible elements of are exactly the prime numbers (and their negatives). (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.)
Hypothesis
Ref Expression
prmirred.i 𝐼 = (Irred‘ℤring)
Assertion
Ref Expression
prmirred (𝐴𝐼 ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) ∈ ℙ))

Proof of Theorem prmirred
StepHypRef Expression
1 prmirred.i . . 3 𝐼 = (Irred‘ℤring)
2 zringbas 20097 . . 3 ℤ = (Base‘ℤring)
31, 2irredcl 18971 . 2 (𝐴𝐼𝐴 ∈ ℤ)
4 elnn0 11540 . . . . . . 7 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
5 ax-1 6 . . . . . . . 8 (𝐴 ∈ ℕ → (𝐴𝐼𝐴 ∈ ℕ))
6 zringring 20094 . . . . . . . . . . 11 ring ∈ Ring
7 zring0 20101 . . . . . . . . . . . 12 0 = (0g‘ℤring)
81, 7irredn0 18970 . . . . . . . . . . 11 ((ℤring ∈ Ring ∧ 𝐴𝐼) → 𝐴 ≠ 0)
96, 8mpan 681 . . . . . . . . . 10 (𝐴𝐼𝐴 ≠ 0)
109necon2bi 2967 . . . . . . . . 9 (𝐴 = 0 → ¬ 𝐴𝐼)
1110pm2.21d 119 . . . . . . . 8 (𝐴 = 0 → (𝐴𝐼𝐴 ∈ ℕ))
125, 11jaoi 883 . . . . . . 7 ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → (𝐴𝐼𝐴 ∈ ℕ))
134, 12sylbi 208 . . . . . 6 (𝐴 ∈ ℕ0 → (𝐴𝐼𝐴 ∈ ℕ))
14 prmnn 15670 . . . . . . 7 (𝐴 ∈ ℙ → 𝐴 ∈ ℕ)
1514a1i 11 . . . . . 6 (𝐴 ∈ ℕ0 → (𝐴 ∈ ℙ → 𝐴 ∈ ℕ))
161prmirredlem 20114 . . . . . . 7 (𝐴 ∈ ℕ → (𝐴𝐼𝐴 ∈ ℙ))
1716a1i 11 . . . . . 6 (𝐴 ∈ ℕ0 → (𝐴 ∈ ℕ → (𝐴𝐼𝐴 ∈ ℙ)))
1813, 15, 17pm5.21ndd 370 . . . . 5 (𝐴 ∈ ℕ0 → (𝐴𝐼𝐴 ∈ ℙ))
19 nn0re 11548 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
20 nn0ge0 11565 . . . . . . 7 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
2119, 20absidd 14448 . . . . . 6 (𝐴 ∈ ℕ0 → (abs‘𝐴) = 𝐴)
2221eleq1d 2829 . . . . 5 (𝐴 ∈ ℕ0 → ((abs‘𝐴) ∈ ℙ ↔ 𝐴 ∈ ℙ))
2318, 22bitr4d 273 . . . 4 (𝐴 ∈ ℕ0 → (𝐴𝐼 ↔ (abs‘𝐴) ∈ ℙ))
2423adantl 473 . . 3 ((𝐴 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴𝐼 ↔ (abs‘𝐴) ∈ ℙ))
251prmirredlem 20114 . . . . . 6 (-𝐴 ∈ ℕ → (-𝐴𝐼 ↔ -𝐴 ∈ ℙ))
2625adantl 473 . . . . 5 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (-𝐴𝐼 ↔ -𝐴 ∈ ℙ))
27 eqid 2765 . . . . . . . . 9 (invg‘ℤring) = (invg‘ℤring)
281, 27, 2irrednegb 18978 . . . . . . . 8 ((ℤring ∈ Ring ∧ 𝐴 ∈ ℤ) → (𝐴𝐼 ↔ ((invg‘ℤring)‘𝐴) ∈ 𝐼))
296, 28mpan 681 . . . . . . 7 (𝐴 ∈ ℤ → (𝐴𝐼 ↔ ((invg‘ℤring)‘𝐴) ∈ 𝐼))
30 zsubrg 20072 . . . . . . . . . . 11 ℤ ∈ (SubRing‘ℂfld)
31 subrgsubg 19055 . . . . . . . . . . 11 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubGrp‘ℂfld))
3230, 31ax-mp 5 . . . . . . . . . 10 ℤ ∈ (SubGrp‘ℂfld)
33 df-zring 20092 . . . . . . . . . . 11 ring = (ℂflds ℤ)
34 eqid 2765 . . . . . . . . . . 11 (invg‘ℂfld) = (invg‘ℂfld)
3533, 34, 27subginv 17867 . . . . . . . . . 10 ((ℤ ∈ (SubGrp‘ℂfld) ∧ 𝐴 ∈ ℤ) → ((invg‘ℂfld)‘𝐴) = ((invg‘ℤring)‘𝐴))
3632, 35mpan 681 . . . . . . . . 9 (𝐴 ∈ ℤ → ((invg‘ℂfld)‘𝐴) = ((invg‘ℤring)‘𝐴))
37 zcn 11629 . . . . . . . . . 10 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
38 cnfldneg 20045 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((invg‘ℂfld)‘𝐴) = -𝐴)
3937, 38syl 17 . . . . . . . . 9 (𝐴 ∈ ℤ → ((invg‘ℂfld)‘𝐴) = -𝐴)
4036, 39eqtr3d 2801 . . . . . . . 8 (𝐴 ∈ ℤ → ((invg‘ℤring)‘𝐴) = -𝐴)
4140eleq1d 2829 . . . . . . 7 (𝐴 ∈ ℤ → (((invg‘ℤring)‘𝐴) ∈ 𝐼 ↔ -𝐴𝐼))
4229, 41bitrd 270 . . . . . 6 (𝐴 ∈ ℤ → (𝐴𝐼 ↔ -𝐴𝐼))
4342adantr 472 . . . . 5 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (𝐴𝐼 ↔ -𝐴𝐼))
44 zre 11628 . . . . . . . 8 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
4544adantr 472 . . . . . . 7 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → 𝐴 ∈ ℝ)
46 nnnn0 11546 . . . . . . . . . 10 (-𝐴 ∈ ℕ → -𝐴 ∈ ℕ0)
4746nn0ge0d 11601 . . . . . . . . 9 (-𝐴 ∈ ℕ → 0 ≤ -𝐴)
4847adantl 473 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → 0 ≤ -𝐴)
4945le0neg1d 10853 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
5048, 49mpbird 248 . . . . . . 7 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → 𝐴 ≤ 0)
5145, 50absnidd 14439 . . . . . 6 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (abs‘𝐴) = -𝐴)
5251eleq1d 2829 . . . . 5 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → ((abs‘𝐴) ∈ ℙ ↔ -𝐴 ∈ ℙ))
5326, 43, 523bitr4d 302 . . . 4 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (𝐴𝐼 ↔ (abs‘𝐴) ∈ ℙ))
5453adantrl 707 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝐴𝐼 ↔ (abs‘𝐴) ∈ ℙ))
55 elznn0nn 11638 . . . 4 (𝐴 ∈ ℤ ↔ (𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)))
5655biimpi 207 . . 3 (𝐴 ∈ ℤ → (𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)))
5724, 54, 56mpjaodan 981 . 2 (𝐴 ∈ ℤ → (𝐴𝐼 ↔ (abs‘𝐴) ∈ ℙ))
583, 57biadan2 853 1 (𝐴𝐼 ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) ∈ ℙ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wo 873   = wceq 1652  wcel 2155  wne 2937   class class class wbr 4809  cfv 6068  cc 10187  cr 10188  0cc0 10189  cle 10329  -cneg 10521  cn 11274  0cn0 11538  cz 11624  abscabs 14261  cprime 15667  invgcminusg 17692  SubGrpcsubg 17854  Ringcrg 18814  Irredcir 18907  SubRingcsubrg 19045  fldccnfld 20019  ringzring 20091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-tpos 7555  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-rp 12029  df-fz 12534  df-seq 13009  df-exp 13068  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-dvds 15268  df-prm 15668  df-gz 15915  df-struct 16134  df-ndx 16135  df-slot 16136  df-base 16138  df-sets 16139  df-ress 16140  df-plusg 16229  df-mulr 16230  df-starv 16231  df-tset 16235  df-ple 16236  df-ds 16238  df-unif 16239  df-0g 16370  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-grp 17694  df-minusg 17695  df-subg 17857  df-cmn 18461  df-mgp 18757  df-ur 18769  df-ring 18816  df-cring 18817  df-oppr 18890  df-dvdsr 18908  df-unit 18909  df-irred 18910  df-invr 18939  df-dvr 18950  df-drng 19018  df-subrg 19047  df-cnfld 20020  df-zring 20092
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator