| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prmirred | Structured version Visualization version GIF version | ||
| Description: The irreducible elements of ℤ are exactly the prime numbers (and their negatives). (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.) |
| Ref | Expression |
|---|---|
| prmirred.i | ⊢ 𝐼 = (Irred‘ℤring) |
| Ref | Expression |
|---|---|
| prmirred | ⊢ (𝐴 ∈ 𝐼 ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) ∈ ℙ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmirred.i | . . 3 ⊢ 𝐼 = (Irred‘ℤring) | |
| 2 | zringbas 21339 | . . 3 ⊢ ℤ = (Base‘ℤring) | |
| 3 | 1, 2 | irredcl 20309 | . 2 ⊢ (𝐴 ∈ 𝐼 → 𝐴 ∈ ℤ) |
| 4 | elnn0 12420 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) | |
| 5 | zringring 21335 | . . . . . . . . . . 11 ⊢ ℤring ∈ Ring | |
| 6 | zring0 21344 | . . . . . . . . . . . 12 ⊢ 0 = (0g‘ℤring) | |
| 7 | 1, 6 | irredn0 20308 | . . . . . . . . . . 11 ⊢ ((ℤring ∈ Ring ∧ 𝐴 ∈ 𝐼) → 𝐴 ≠ 0) |
| 8 | 5, 7 | mpan 690 | . . . . . . . . . 10 ⊢ (𝐴 ∈ 𝐼 → 𝐴 ≠ 0) |
| 9 | 8 | necon2bi 2955 | . . . . . . . . 9 ⊢ (𝐴 = 0 → ¬ 𝐴 ∈ 𝐼) |
| 10 | 9 | pm2.21d 121 | . . . . . . . 8 ⊢ (𝐴 = 0 → (𝐴 ∈ 𝐼 → 𝐴 ∈ ℕ)) |
| 11 | 10 | jao1i 858 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → (𝐴 ∈ 𝐼 → 𝐴 ∈ ℕ)) |
| 12 | 4, 11 | sylbi 217 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 → (𝐴 ∈ 𝐼 → 𝐴 ∈ ℕ)) |
| 13 | prmnn 16620 | . . . . . . 7 ⊢ (𝐴 ∈ ℙ → 𝐴 ∈ ℕ) | |
| 14 | 13 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 → (𝐴 ∈ ℙ → 𝐴 ∈ ℕ)) |
| 15 | 1 | prmirredlem 21358 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → (𝐴 ∈ 𝐼 ↔ 𝐴 ∈ ℙ)) |
| 16 | 15 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 → (𝐴 ∈ ℕ → (𝐴 ∈ 𝐼 ↔ 𝐴 ∈ ℙ))) |
| 17 | 12, 14, 16 | pm5.21ndd 379 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → (𝐴 ∈ 𝐼 ↔ 𝐴 ∈ ℙ)) |
| 18 | nn0re 12427 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
| 19 | nn0ge0 12443 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 → 0 ≤ 𝐴) | |
| 20 | 18, 19 | absidd 15365 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 → (abs‘𝐴) = 𝐴) |
| 21 | 20 | eleq1d 2813 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → ((abs‘𝐴) ∈ ℙ ↔ 𝐴 ∈ ℙ)) |
| 22 | 17, 21 | bitr4d 282 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → (𝐴 ∈ 𝐼 ↔ (abs‘𝐴) ∈ ℙ)) |
| 23 | 22 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴 ∈ 𝐼 ↔ (abs‘𝐴) ∈ ℙ)) |
| 24 | 1 | prmirredlem 21358 | . . . . . 6 ⊢ (-𝐴 ∈ ℕ → (-𝐴 ∈ 𝐼 ↔ -𝐴 ∈ ℙ)) |
| 25 | 24 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (-𝐴 ∈ 𝐼 ↔ -𝐴 ∈ ℙ)) |
| 26 | eqid 2729 | . . . . . . . . 9 ⊢ (invg‘ℤring) = (invg‘ℤring) | |
| 27 | 1, 26, 2 | irrednegb 20316 | . . . . . . . 8 ⊢ ((ℤring ∈ Ring ∧ 𝐴 ∈ ℤ) → (𝐴 ∈ 𝐼 ↔ ((invg‘ℤring)‘𝐴) ∈ 𝐼)) |
| 28 | 5, 27 | mpan 690 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → (𝐴 ∈ 𝐼 ↔ ((invg‘ℤring)‘𝐴) ∈ 𝐼)) |
| 29 | zsubrg 21313 | . . . . . . . . . . 11 ⊢ ℤ ∈ (SubRing‘ℂfld) | |
| 30 | subrgsubg 20462 | . . . . . . . . . . 11 ⊢ (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubGrp‘ℂfld)) | |
| 31 | 29, 30 | ax-mp 5 | . . . . . . . . . 10 ⊢ ℤ ∈ (SubGrp‘ℂfld) |
| 32 | df-zring 21333 | . . . . . . . . . . 11 ⊢ ℤring = (ℂfld ↾s ℤ) | |
| 33 | eqid 2729 | . . . . . . . . . . 11 ⊢ (invg‘ℂfld) = (invg‘ℂfld) | |
| 34 | 32, 33, 26 | subginv 19041 | . . . . . . . . . 10 ⊢ ((ℤ ∈ (SubGrp‘ℂfld) ∧ 𝐴 ∈ ℤ) → ((invg‘ℂfld)‘𝐴) = ((invg‘ℤring)‘𝐴)) |
| 35 | 31, 34 | mpan 690 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℤ → ((invg‘ℂfld)‘𝐴) = ((invg‘ℤring)‘𝐴)) |
| 36 | zcn 12510 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
| 37 | cnfldneg 21283 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℂ → ((invg‘ℂfld)‘𝐴) = -𝐴) | |
| 38 | 36, 37 | syl 17 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℤ → ((invg‘ℂfld)‘𝐴) = -𝐴) |
| 39 | 35, 38 | eqtr3d 2766 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → ((invg‘ℤring)‘𝐴) = -𝐴) |
| 40 | 39 | eleq1d 2813 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → (((invg‘ℤring)‘𝐴) ∈ 𝐼 ↔ -𝐴 ∈ 𝐼)) |
| 41 | 28, 40 | bitrd 279 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → (𝐴 ∈ 𝐼 ↔ -𝐴 ∈ 𝐼)) |
| 42 | 41 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (𝐴 ∈ 𝐼 ↔ -𝐴 ∈ 𝐼)) |
| 43 | zre 12509 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
| 44 | 43 | adantr 480 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → 𝐴 ∈ ℝ) |
| 45 | nnnn0 12425 | . . . . . . . . . 10 ⊢ (-𝐴 ∈ ℕ → -𝐴 ∈ ℕ0) | |
| 46 | 45 | nn0ge0d 12482 | . . . . . . . . 9 ⊢ (-𝐴 ∈ ℕ → 0 ≤ -𝐴) |
| 47 | 46 | adantl 481 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → 0 ≤ -𝐴) |
| 48 | 44 | le0neg1d 11725 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴)) |
| 49 | 47, 48 | mpbird 257 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → 𝐴 ≤ 0) |
| 50 | 44, 49 | absnidd 15356 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (abs‘𝐴) = -𝐴) |
| 51 | 50 | eleq1d 2813 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → ((abs‘𝐴) ∈ ℙ ↔ -𝐴 ∈ ℙ)) |
| 52 | 25, 42, 51 | 3bitr4d 311 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (𝐴 ∈ 𝐼 ↔ (abs‘𝐴) ∈ ℙ)) |
| 53 | 52 | adantrl 716 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝐴 ∈ 𝐼 ↔ (abs‘𝐴) ∈ ℙ)) |
| 54 | elznn0nn 12519 | . . . 4 ⊢ (𝐴 ∈ ℤ ↔ (𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ))) | |
| 55 | 54 | biimpi 216 | . . 3 ⊢ (𝐴 ∈ ℤ → (𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ))) |
| 56 | 23, 53, 55 | mpjaodan 960 | . 2 ⊢ (𝐴 ∈ ℤ → (𝐴 ∈ 𝐼 ↔ (abs‘𝐴) ∈ ℙ)) |
| 57 | 3, 56 | biadanii 821 | 1 ⊢ (𝐴 ∈ 𝐼 ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) ∈ ℙ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5102 ‘cfv 6499 ℂcc 11042 ℝcr 11043 0cc0 11044 ≤ cle 11185 -cneg 11382 ℕcn 12162 ℕ0cn0 12418 ℤcz 12505 abscabs 15176 ℙcprime 16617 invgcminusg 18842 SubGrpcsubg 19028 Ringcrg 20118 Irredcir 20241 SubRingcsubrg 20454 ℂfldccnfld 21240 ℤringczring 21332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 ax-mulf 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-rp 12928 df-fz 13445 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-dvds 16199 df-prm 16618 df-gz 16877 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-subg 19031 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-irred 20244 df-invr 20273 df-dvr 20286 df-subrng 20431 df-subrg 20455 df-drng 20616 df-cnfld 21241 df-zring 21333 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |