MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmirred Structured version   Visualization version   GIF version

Theorem prmirred 21391
Description: The irreducible elements of are exactly the prime numbers (and their negatives). (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.)
Hypothesis
Ref Expression
prmirred.i 𝐼 = (Irred‘ℤring)
Assertion
Ref Expression
prmirred (𝐴𝐼 ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) ∈ ℙ))

Proof of Theorem prmirred
StepHypRef Expression
1 prmirred.i . . 3 𝐼 = (Irred‘ℤring)
2 zringbas 21370 . . 3 ℤ = (Base‘ℤring)
31, 2irredcl 20340 . 2 (𝐴𝐼𝐴 ∈ ℤ)
4 elnn0 12451 . . . . . . 7 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
5 zringring 21366 . . . . . . . . . . 11 ring ∈ Ring
6 zring0 21375 . . . . . . . . . . . 12 0 = (0g‘ℤring)
71, 6irredn0 20339 . . . . . . . . . . 11 ((ℤring ∈ Ring ∧ 𝐴𝐼) → 𝐴 ≠ 0)
85, 7mpan 690 . . . . . . . . . 10 (𝐴𝐼𝐴 ≠ 0)
98necon2bi 2956 . . . . . . . . 9 (𝐴 = 0 → ¬ 𝐴𝐼)
109pm2.21d 121 . . . . . . . 8 (𝐴 = 0 → (𝐴𝐼𝐴 ∈ ℕ))
1110jao1i 858 . . . . . . 7 ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → (𝐴𝐼𝐴 ∈ ℕ))
124, 11sylbi 217 . . . . . 6 (𝐴 ∈ ℕ0 → (𝐴𝐼𝐴 ∈ ℕ))
13 prmnn 16651 . . . . . . 7 (𝐴 ∈ ℙ → 𝐴 ∈ ℕ)
1413a1i 11 . . . . . 6 (𝐴 ∈ ℕ0 → (𝐴 ∈ ℙ → 𝐴 ∈ ℕ))
151prmirredlem 21389 . . . . . . 7 (𝐴 ∈ ℕ → (𝐴𝐼𝐴 ∈ ℙ))
1615a1i 11 . . . . . 6 (𝐴 ∈ ℕ0 → (𝐴 ∈ ℕ → (𝐴𝐼𝐴 ∈ ℙ)))
1712, 14, 16pm5.21ndd 379 . . . . 5 (𝐴 ∈ ℕ0 → (𝐴𝐼𝐴 ∈ ℙ))
18 nn0re 12458 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
19 nn0ge0 12474 . . . . . . 7 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
2018, 19absidd 15396 . . . . . 6 (𝐴 ∈ ℕ0 → (abs‘𝐴) = 𝐴)
2120eleq1d 2814 . . . . 5 (𝐴 ∈ ℕ0 → ((abs‘𝐴) ∈ ℙ ↔ 𝐴 ∈ ℙ))
2217, 21bitr4d 282 . . . 4 (𝐴 ∈ ℕ0 → (𝐴𝐼 ↔ (abs‘𝐴) ∈ ℙ))
2322adantl 481 . . 3 ((𝐴 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴𝐼 ↔ (abs‘𝐴) ∈ ℙ))
241prmirredlem 21389 . . . . . 6 (-𝐴 ∈ ℕ → (-𝐴𝐼 ↔ -𝐴 ∈ ℙ))
2524adantl 481 . . . . 5 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (-𝐴𝐼 ↔ -𝐴 ∈ ℙ))
26 eqid 2730 . . . . . . . . 9 (invg‘ℤring) = (invg‘ℤring)
271, 26, 2irrednegb 20347 . . . . . . . 8 ((ℤring ∈ Ring ∧ 𝐴 ∈ ℤ) → (𝐴𝐼 ↔ ((invg‘ℤring)‘𝐴) ∈ 𝐼))
285, 27mpan 690 . . . . . . 7 (𝐴 ∈ ℤ → (𝐴𝐼 ↔ ((invg‘ℤring)‘𝐴) ∈ 𝐼))
29 zsubrg 21344 . . . . . . . . . . 11 ℤ ∈ (SubRing‘ℂfld)
30 subrgsubg 20493 . . . . . . . . . . 11 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubGrp‘ℂfld))
3129, 30ax-mp 5 . . . . . . . . . 10 ℤ ∈ (SubGrp‘ℂfld)
32 df-zring 21364 . . . . . . . . . . 11 ring = (ℂflds ℤ)
33 eqid 2730 . . . . . . . . . . 11 (invg‘ℂfld) = (invg‘ℂfld)
3432, 33, 26subginv 19072 . . . . . . . . . 10 ((ℤ ∈ (SubGrp‘ℂfld) ∧ 𝐴 ∈ ℤ) → ((invg‘ℂfld)‘𝐴) = ((invg‘ℤring)‘𝐴))
3531, 34mpan 690 . . . . . . . . 9 (𝐴 ∈ ℤ → ((invg‘ℂfld)‘𝐴) = ((invg‘ℤring)‘𝐴))
36 zcn 12541 . . . . . . . . . 10 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
37 cnfldneg 21314 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((invg‘ℂfld)‘𝐴) = -𝐴)
3836, 37syl 17 . . . . . . . . 9 (𝐴 ∈ ℤ → ((invg‘ℂfld)‘𝐴) = -𝐴)
3935, 38eqtr3d 2767 . . . . . . . 8 (𝐴 ∈ ℤ → ((invg‘ℤring)‘𝐴) = -𝐴)
4039eleq1d 2814 . . . . . . 7 (𝐴 ∈ ℤ → (((invg‘ℤring)‘𝐴) ∈ 𝐼 ↔ -𝐴𝐼))
4128, 40bitrd 279 . . . . . 6 (𝐴 ∈ ℤ → (𝐴𝐼 ↔ -𝐴𝐼))
4241adantr 480 . . . . 5 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (𝐴𝐼 ↔ -𝐴𝐼))
43 zre 12540 . . . . . . . 8 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
4443adantr 480 . . . . . . 7 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → 𝐴 ∈ ℝ)
45 nnnn0 12456 . . . . . . . . . 10 (-𝐴 ∈ ℕ → -𝐴 ∈ ℕ0)
4645nn0ge0d 12513 . . . . . . . . 9 (-𝐴 ∈ ℕ → 0 ≤ -𝐴)
4746adantl 481 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → 0 ≤ -𝐴)
4844le0neg1d 11756 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
4947, 48mpbird 257 . . . . . . 7 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → 𝐴 ≤ 0)
5044, 49absnidd 15387 . . . . . 6 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (abs‘𝐴) = -𝐴)
5150eleq1d 2814 . . . . 5 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → ((abs‘𝐴) ∈ ℙ ↔ -𝐴 ∈ ℙ))
5225, 42, 513bitr4d 311 . . . 4 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (𝐴𝐼 ↔ (abs‘𝐴) ∈ ℙ))
5352adantrl 716 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝐴𝐼 ↔ (abs‘𝐴) ∈ ℙ))
54 elznn0nn 12550 . . . 4 (𝐴 ∈ ℤ ↔ (𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)))
5554biimpi 216 . . 3 (𝐴 ∈ ℤ → (𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)))
5623, 53, 55mpjaodan 960 . 2 (𝐴 ∈ ℤ → (𝐴𝐼 ↔ (abs‘𝐴) ∈ ℙ))
573, 56biadanii 821 1 (𝐴𝐼 ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) ∈ ℙ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  cfv 6514  cc 11073  cr 11074  0cc0 11075  cle 11216  -cneg 11413  cn 12193  0cn0 12449  cz 12536  abscabs 15207  cprime 16648  invgcminusg 18873  SubGrpcsubg 19059  Ringcrg 20149  Irredcir 20272  SubRingcsubrg 20485  fldccnfld 21271  ringczring 21363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-fz 13476  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-prm 16649  df-gz 16908  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-subg 19062  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-irred 20275  df-invr 20304  df-dvr 20317  df-subrng 20462  df-subrg 20486  df-drng 20647  df-cnfld 21272  df-zring 21364
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator