![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prmirred | Structured version Visualization version GIF version |
Description: The irreducible elements of ℤ are exactly the prime numbers (and their negatives). (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.) |
Ref | Expression |
---|---|
prmirred.i | ⊢ 𝐼 = (Irred‘ℤring) |
Ref | Expression |
---|---|
prmirred | ⊢ (𝐴 ∈ 𝐼 ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) ∈ ℙ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmirred.i | . . 3 ⊢ 𝐼 = (Irred‘ℤring) | |
2 | zringbas 20305 | . . 3 ⊢ ℤ = (Base‘ℤring) | |
3 | 1, 2 | irredcl 19144 | . 2 ⊢ (𝐴 ∈ 𝐼 → 𝐴 ∈ ℤ) |
4 | elnn0 11747 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) | |
5 | zringring 20302 | . . . . . . . . . . 11 ⊢ ℤring ∈ Ring | |
6 | zring0 20309 | . . . . . . . . . . . 12 ⊢ 0 = (0g‘ℤring) | |
7 | 1, 6 | irredn0 19143 | . . . . . . . . . . 11 ⊢ ((ℤring ∈ Ring ∧ 𝐴 ∈ 𝐼) → 𝐴 ≠ 0) |
8 | 5, 7 | mpan 686 | . . . . . . . . . 10 ⊢ (𝐴 ∈ 𝐼 → 𝐴 ≠ 0) |
9 | 8 | necon2bi 3014 | . . . . . . . . 9 ⊢ (𝐴 = 0 → ¬ 𝐴 ∈ 𝐼) |
10 | 9 | pm2.21d 121 | . . . . . . . 8 ⊢ (𝐴 = 0 → (𝐴 ∈ 𝐼 → 𝐴 ∈ ℕ)) |
11 | 10 | jao1i 853 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → (𝐴 ∈ 𝐼 → 𝐴 ∈ ℕ)) |
12 | 4, 11 | sylbi 218 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 → (𝐴 ∈ 𝐼 → 𝐴 ∈ ℕ)) |
13 | prmnn 15847 | . . . . . . 7 ⊢ (𝐴 ∈ ℙ → 𝐴 ∈ ℕ) | |
14 | 13 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 → (𝐴 ∈ ℙ → 𝐴 ∈ ℕ)) |
15 | 1 | prmirredlem 20322 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → (𝐴 ∈ 𝐼 ↔ 𝐴 ∈ ℙ)) |
16 | 15 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 → (𝐴 ∈ ℕ → (𝐴 ∈ 𝐼 ↔ 𝐴 ∈ ℙ))) |
17 | 12, 14, 16 | pm5.21ndd 381 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → (𝐴 ∈ 𝐼 ↔ 𝐴 ∈ ℙ)) |
18 | nn0re 11754 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
19 | nn0ge0 11770 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 → 0 ≤ 𝐴) | |
20 | 18, 19 | absidd 14616 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 → (abs‘𝐴) = 𝐴) |
21 | 20 | eleq1d 2867 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → ((abs‘𝐴) ∈ ℙ ↔ 𝐴 ∈ ℙ)) |
22 | 17, 21 | bitr4d 283 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → (𝐴 ∈ 𝐼 ↔ (abs‘𝐴) ∈ ℙ)) |
23 | 22 | adantl 482 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴 ∈ 𝐼 ↔ (abs‘𝐴) ∈ ℙ)) |
24 | 1 | prmirredlem 20322 | . . . . . 6 ⊢ (-𝐴 ∈ ℕ → (-𝐴 ∈ 𝐼 ↔ -𝐴 ∈ ℙ)) |
25 | 24 | adantl 482 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (-𝐴 ∈ 𝐼 ↔ -𝐴 ∈ ℙ)) |
26 | eqid 2795 | . . . . . . . . 9 ⊢ (invg‘ℤring) = (invg‘ℤring) | |
27 | 1, 26, 2 | irrednegb 19151 | . . . . . . . 8 ⊢ ((ℤring ∈ Ring ∧ 𝐴 ∈ ℤ) → (𝐴 ∈ 𝐼 ↔ ((invg‘ℤring)‘𝐴) ∈ 𝐼)) |
28 | 5, 27 | mpan 686 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → (𝐴 ∈ 𝐼 ↔ ((invg‘ℤring)‘𝐴) ∈ 𝐼)) |
29 | zsubrg 20280 | . . . . . . . . . . 11 ⊢ ℤ ∈ (SubRing‘ℂfld) | |
30 | subrgsubg 19231 | . . . . . . . . . . 11 ⊢ (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubGrp‘ℂfld)) | |
31 | 29, 30 | ax-mp 5 | . . . . . . . . . 10 ⊢ ℤ ∈ (SubGrp‘ℂfld) |
32 | df-zring 20300 | . . . . . . . . . . 11 ⊢ ℤring = (ℂfld ↾s ℤ) | |
33 | eqid 2795 | . . . . . . . . . . 11 ⊢ (invg‘ℂfld) = (invg‘ℂfld) | |
34 | 32, 33, 26 | subginv 18040 | . . . . . . . . . 10 ⊢ ((ℤ ∈ (SubGrp‘ℂfld) ∧ 𝐴 ∈ ℤ) → ((invg‘ℂfld)‘𝐴) = ((invg‘ℤring)‘𝐴)) |
35 | 31, 34 | mpan 686 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℤ → ((invg‘ℂfld)‘𝐴) = ((invg‘ℤring)‘𝐴)) |
36 | zcn 11834 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
37 | cnfldneg 20253 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℂ → ((invg‘ℂfld)‘𝐴) = -𝐴) | |
38 | 36, 37 | syl 17 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℤ → ((invg‘ℂfld)‘𝐴) = -𝐴) |
39 | 35, 38 | eqtr3d 2833 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → ((invg‘ℤring)‘𝐴) = -𝐴) |
40 | 39 | eleq1d 2867 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → (((invg‘ℤring)‘𝐴) ∈ 𝐼 ↔ -𝐴 ∈ 𝐼)) |
41 | 28, 40 | bitrd 280 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → (𝐴 ∈ 𝐼 ↔ -𝐴 ∈ 𝐼)) |
42 | 41 | adantr 481 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (𝐴 ∈ 𝐼 ↔ -𝐴 ∈ 𝐼)) |
43 | zre 11833 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
44 | 43 | adantr 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → 𝐴 ∈ ℝ) |
45 | nnnn0 11752 | . . . . . . . . . 10 ⊢ (-𝐴 ∈ ℕ → -𝐴 ∈ ℕ0) | |
46 | 45 | nn0ge0d 11806 | . . . . . . . . 9 ⊢ (-𝐴 ∈ ℕ → 0 ≤ -𝐴) |
47 | 46 | adantl 482 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → 0 ≤ -𝐴) |
48 | 44 | le0neg1d 11059 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴)) |
49 | 47, 48 | mpbird 258 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → 𝐴 ≤ 0) |
50 | 44, 49 | absnidd 14607 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (abs‘𝐴) = -𝐴) |
51 | 50 | eleq1d 2867 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → ((abs‘𝐴) ∈ ℙ ↔ -𝐴 ∈ ℙ)) |
52 | 25, 42, 51 | 3bitr4d 312 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (𝐴 ∈ 𝐼 ↔ (abs‘𝐴) ∈ ℙ)) |
53 | 52 | adantrl 712 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝐴 ∈ 𝐼 ↔ (abs‘𝐴) ∈ ℙ)) |
54 | elznn0nn 11843 | . . . 4 ⊢ (𝐴 ∈ ℤ ↔ (𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ))) | |
55 | 54 | biimpi 217 | . . 3 ⊢ (𝐴 ∈ ℤ → (𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ))) |
56 | 23, 53, 55 | mpjaodan 953 | . 2 ⊢ (𝐴 ∈ ℤ → (𝐴 ∈ 𝐼 ↔ (abs‘𝐴) ∈ ℙ)) |
57 | 3, 56 | biadanii 819 | 1 ⊢ (𝐴 ∈ 𝐼 ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) ∈ ℙ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∨ wo 842 = wceq 1522 ∈ wcel 2081 ≠ wne 2984 class class class wbr 4962 ‘cfv 6225 ℂcc 10381 ℝcr 10382 0cc0 10383 ≤ cle 10522 -cneg 10718 ℕcn 11486 ℕ0cn0 11745 ℤcz 11829 abscabs 14427 ℙcprime 15844 invgcminusg 17862 SubGrpcsubg 18027 Ringcrg 18987 Irredcir 19080 SubRingcsubrg 19221 ℂfldccnfld 20227 ℤringzring 20299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 ax-pre-sup 10461 ax-addf 10462 ax-mulf 10463 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-1st 7545 df-2nd 7546 df-tpos 7743 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-2o 7954 df-oadd 7957 df-er 8139 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-sup 8752 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-div 11146 df-nn 11487 df-2 11548 df-3 11549 df-4 11550 df-5 11551 df-6 11552 df-7 11553 df-8 11554 df-9 11555 df-n0 11746 df-z 11830 df-dec 11948 df-uz 12094 df-rp 12240 df-fz 12743 df-seq 13220 df-exp 13280 df-cj 14292 df-re 14293 df-im 14294 df-sqrt 14428 df-abs 14429 df-dvds 15441 df-prm 15845 df-gz 16095 df-struct 16314 df-ndx 16315 df-slot 16316 df-base 16318 df-sets 16319 df-ress 16320 df-plusg 16407 df-mulr 16408 df-starv 16409 df-tset 16413 df-ple 16414 df-ds 16416 df-unif 16417 df-0g 16544 df-mgm 17681 df-sgrp 17723 df-mnd 17734 df-grp 17864 df-minusg 17865 df-subg 18030 df-cmn 18635 df-mgp 18930 df-ur 18942 df-ring 18989 df-cring 18990 df-oppr 19063 df-dvdsr 19081 df-unit 19082 df-irred 19083 df-invr 19112 df-dvr 19123 df-drng 19194 df-subrg 19223 df-cnfld 20228 df-zring 20300 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |