| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prmirred | Structured version Visualization version GIF version | ||
| Description: The irreducible elements of ℤ are exactly the prime numbers (and their negatives). (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.) |
| Ref | Expression |
|---|---|
| prmirred.i | ⊢ 𝐼 = (Irred‘ℤring) |
| Ref | Expression |
|---|---|
| prmirred | ⊢ (𝐴 ∈ 𝐼 ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) ∈ ℙ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmirred.i | . . 3 ⊢ 𝐼 = (Irred‘ℤring) | |
| 2 | zringbas 21363 | . . 3 ⊢ ℤ = (Base‘ℤring) | |
| 3 | 1, 2 | irredcl 20333 | . 2 ⊢ (𝐴 ∈ 𝐼 → 𝐴 ∈ ℤ) |
| 4 | elnn0 12444 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) | |
| 5 | zringring 21359 | . . . . . . . . . . 11 ⊢ ℤring ∈ Ring | |
| 6 | zring0 21368 | . . . . . . . . . . . 12 ⊢ 0 = (0g‘ℤring) | |
| 7 | 1, 6 | irredn0 20332 | . . . . . . . . . . 11 ⊢ ((ℤring ∈ Ring ∧ 𝐴 ∈ 𝐼) → 𝐴 ≠ 0) |
| 8 | 5, 7 | mpan 690 | . . . . . . . . . 10 ⊢ (𝐴 ∈ 𝐼 → 𝐴 ≠ 0) |
| 9 | 8 | necon2bi 2955 | . . . . . . . . 9 ⊢ (𝐴 = 0 → ¬ 𝐴 ∈ 𝐼) |
| 10 | 9 | pm2.21d 121 | . . . . . . . 8 ⊢ (𝐴 = 0 → (𝐴 ∈ 𝐼 → 𝐴 ∈ ℕ)) |
| 11 | 10 | jao1i 858 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → (𝐴 ∈ 𝐼 → 𝐴 ∈ ℕ)) |
| 12 | 4, 11 | sylbi 217 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 → (𝐴 ∈ 𝐼 → 𝐴 ∈ ℕ)) |
| 13 | prmnn 16644 | . . . . . . 7 ⊢ (𝐴 ∈ ℙ → 𝐴 ∈ ℕ) | |
| 14 | 13 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 → (𝐴 ∈ ℙ → 𝐴 ∈ ℕ)) |
| 15 | 1 | prmirredlem 21382 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → (𝐴 ∈ 𝐼 ↔ 𝐴 ∈ ℙ)) |
| 16 | 15 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 → (𝐴 ∈ ℕ → (𝐴 ∈ 𝐼 ↔ 𝐴 ∈ ℙ))) |
| 17 | 12, 14, 16 | pm5.21ndd 379 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → (𝐴 ∈ 𝐼 ↔ 𝐴 ∈ ℙ)) |
| 18 | nn0re 12451 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
| 19 | nn0ge0 12467 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 → 0 ≤ 𝐴) | |
| 20 | 18, 19 | absidd 15389 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 → (abs‘𝐴) = 𝐴) |
| 21 | 20 | eleq1d 2813 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → ((abs‘𝐴) ∈ ℙ ↔ 𝐴 ∈ ℙ)) |
| 22 | 17, 21 | bitr4d 282 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → (𝐴 ∈ 𝐼 ↔ (abs‘𝐴) ∈ ℙ)) |
| 23 | 22 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴 ∈ 𝐼 ↔ (abs‘𝐴) ∈ ℙ)) |
| 24 | 1 | prmirredlem 21382 | . . . . . 6 ⊢ (-𝐴 ∈ ℕ → (-𝐴 ∈ 𝐼 ↔ -𝐴 ∈ ℙ)) |
| 25 | 24 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (-𝐴 ∈ 𝐼 ↔ -𝐴 ∈ ℙ)) |
| 26 | eqid 2729 | . . . . . . . . 9 ⊢ (invg‘ℤring) = (invg‘ℤring) | |
| 27 | 1, 26, 2 | irrednegb 20340 | . . . . . . . 8 ⊢ ((ℤring ∈ Ring ∧ 𝐴 ∈ ℤ) → (𝐴 ∈ 𝐼 ↔ ((invg‘ℤring)‘𝐴) ∈ 𝐼)) |
| 28 | 5, 27 | mpan 690 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → (𝐴 ∈ 𝐼 ↔ ((invg‘ℤring)‘𝐴) ∈ 𝐼)) |
| 29 | zsubrg 21337 | . . . . . . . . . . 11 ⊢ ℤ ∈ (SubRing‘ℂfld) | |
| 30 | subrgsubg 20486 | . . . . . . . . . . 11 ⊢ (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubGrp‘ℂfld)) | |
| 31 | 29, 30 | ax-mp 5 | . . . . . . . . . 10 ⊢ ℤ ∈ (SubGrp‘ℂfld) |
| 32 | df-zring 21357 | . . . . . . . . . . 11 ⊢ ℤring = (ℂfld ↾s ℤ) | |
| 33 | eqid 2729 | . . . . . . . . . . 11 ⊢ (invg‘ℂfld) = (invg‘ℂfld) | |
| 34 | 32, 33, 26 | subginv 19065 | . . . . . . . . . 10 ⊢ ((ℤ ∈ (SubGrp‘ℂfld) ∧ 𝐴 ∈ ℤ) → ((invg‘ℂfld)‘𝐴) = ((invg‘ℤring)‘𝐴)) |
| 35 | 31, 34 | mpan 690 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℤ → ((invg‘ℂfld)‘𝐴) = ((invg‘ℤring)‘𝐴)) |
| 36 | zcn 12534 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
| 37 | cnfldneg 21307 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℂ → ((invg‘ℂfld)‘𝐴) = -𝐴) | |
| 38 | 36, 37 | syl 17 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℤ → ((invg‘ℂfld)‘𝐴) = -𝐴) |
| 39 | 35, 38 | eqtr3d 2766 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → ((invg‘ℤring)‘𝐴) = -𝐴) |
| 40 | 39 | eleq1d 2813 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → (((invg‘ℤring)‘𝐴) ∈ 𝐼 ↔ -𝐴 ∈ 𝐼)) |
| 41 | 28, 40 | bitrd 279 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → (𝐴 ∈ 𝐼 ↔ -𝐴 ∈ 𝐼)) |
| 42 | 41 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (𝐴 ∈ 𝐼 ↔ -𝐴 ∈ 𝐼)) |
| 43 | zre 12533 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
| 44 | 43 | adantr 480 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → 𝐴 ∈ ℝ) |
| 45 | nnnn0 12449 | . . . . . . . . . 10 ⊢ (-𝐴 ∈ ℕ → -𝐴 ∈ ℕ0) | |
| 46 | 45 | nn0ge0d 12506 | . . . . . . . . 9 ⊢ (-𝐴 ∈ ℕ → 0 ≤ -𝐴) |
| 47 | 46 | adantl 481 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → 0 ≤ -𝐴) |
| 48 | 44 | le0neg1d 11749 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴)) |
| 49 | 47, 48 | mpbird 257 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → 𝐴 ≤ 0) |
| 50 | 44, 49 | absnidd 15380 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (abs‘𝐴) = -𝐴) |
| 51 | 50 | eleq1d 2813 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → ((abs‘𝐴) ∈ ℙ ↔ -𝐴 ∈ ℙ)) |
| 52 | 25, 42, 51 | 3bitr4d 311 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (𝐴 ∈ 𝐼 ↔ (abs‘𝐴) ∈ ℙ)) |
| 53 | 52 | adantrl 716 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝐴 ∈ 𝐼 ↔ (abs‘𝐴) ∈ ℙ)) |
| 54 | elznn0nn 12543 | . . . 4 ⊢ (𝐴 ∈ ℤ ↔ (𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ))) | |
| 55 | 54 | biimpi 216 | . . 3 ⊢ (𝐴 ∈ ℤ → (𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ))) |
| 56 | 23, 53, 55 | mpjaodan 960 | . 2 ⊢ (𝐴 ∈ ℤ → (𝐴 ∈ 𝐼 ↔ (abs‘𝐴) ∈ ℙ)) |
| 57 | 3, 56 | biadanii 821 | 1 ⊢ (𝐴 ∈ 𝐼 ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) ∈ ℙ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5107 ‘cfv 6511 ℂcc 11066 ℝcr 11067 0cc0 11068 ≤ cle 11209 -cneg 11406 ℕcn 12186 ℕ0cn0 12442 ℤcz 12529 abscabs 15200 ℙcprime 16641 invgcminusg 18866 SubGrpcsubg 19052 Ringcrg 20142 Irredcir 20265 SubRingcsubrg 20478 ℂfldccnfld 21264 ℤringczring 21356 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-fz 13469 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-dvds 16223 df-prm 16642 df-gz 16901 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-subg 19055 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-irred 20268 df-invr 20297 df-dvr 20310 df-subrng 20455 df-subrg 20479 df-drng 20640 df-cnfld 21265 df-zring 21357 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |