![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prmirred | Structured version Visualization version GIF version |
Description: The irreducible elements of ℤ are exactly the prime numbers (and their negatives). (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.) |
Ref | Expression |
---|---|
prmirred.i | ⊢ 𝐼 = (Irred‘ℤring) |
Ref | Expression |
---|---|
prmirred | ⊢ (𝐴 ∈ 𝐼 ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) ∈ ℙ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmirred.i | . . 3 ⊢ 𝐼 = (Irred‘ℤring) | |
2 | zringbas 21481 | . . 3 ⊢ ℤ = (Base‘ℤring) | |
3 | 1, 2 | irredcl 20440 | . 2 ⊢ (𝐴 ∈ 𝐼 → 𝐴 ∈ ℤ) |
4 | elnn0 12525 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) | |
5 | zringring 21477 | . . . . . . . . . . 11 ⊢ ℤring ∈ Ring | |
6 | zring0 21486 | . . . . . . . . . . . 12 ⊢ 0 = (0g‘ℤring) | |
7 | 1, 6 | irredn0 20439 | . . . . . . . . . . 11 ⊢ ((ℤring ∈ Ring ∧ 𝐴 ∈ 𝐼) → 𝐴 ≠ 0) |
8 | 5, 7 | mpan 690 | . . . . . . . . . 10 ⊢ (𝐴 ∈ 𝐼 → 𝐴 ≠ 0) |
9 | 8 | necon2bi 2968 | . . . . . . . . 9 ⊢ (𝐴 = 0 → ¬ 𝐴 ∈ 𝐼) |
10 | 9 | pm2.21d 121 | . . . . . . . 8 ⊢ (𝐴 = 0 → (𝐴 ∈ 𝐼 → 𝐴 ∈ ℕ)) |
11 | 10 | jao1i 858 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → (𝐴 ∈ 𝐼 → 𝐴 ∈ ℕ)) |
12 | 4, 11 | sylbi 217 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 → (𝐴 ∈ 𝐼 → 𝐴 ∈ ℕ)) |
13 | prmnn 16707 | . . . . . . 7 ⊢ (𝐴 ∈ ℙ → 𝐴 ∈ ℕ) | |
14 | 13 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 → (𝐴 ∈ ℙ → 𝐴 ∈ ℕ)) |
15 | 1 | prmirredlem 21500 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → (𝐴 ∈ 𝐼 ↔ 𝐴 ∈ ℙ)) |
16 | 15 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 → (𝐴 ∈ ℕ → (𝐴 ∈ 𝐼 ↔ 𝐴 ∈ ℙ))) |
17 | 12, 14, 16 | pm5.21ndd 379 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → (𝐴 ∈ 𝐼 ↔ 𝐴 ∈ ℙ)) |
18 | nn0re 12532 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
19 | nn0ge0 12548 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 → 0 ≤ 𝐴) | |
20 | 18, 19 | absidd 15457 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 → (abs‘𝐴) = 𝐴) |
21 | 20 | eleq1d 2823 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → ((abs‘𝐴) ∈ ℙ ↔ 𝐴 ∈ ℙ)) |
22 | 17, 21 | bitr4d 282 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → (𝐴 ∈ 𝐼 ↔ (abs‘𝐴) ∈ ℙ)) |
23 | 22 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴 ∈ 𝐼 ↔ (abs‘𝐴) ∈ ℙ)) |
24 | 1 | prmirredlem 21500 | . . . . . 6 ⊢ (-𝐴 ∈ ℕ → (-𝐴 ∈ 𝐼 ↔ -𝐴 ∈ ℙ)) |
25 | 24 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (-𝐴 ∈ 𝐼 ↔ -𝐴 ∈ ℙ)) |
26 | eqid 2734 | . . . . . . . . 9 ⊢ (invg‘ℤring) = (invg‘ℤring) | |
27 | 1, 26, 2 | irrednegb 20447 | . . . . . . . 8 ⊢ ((ℤring ∈ Ring ∧ 𝐴 ∈ ℤ) → (𝐴 ∈ 𝐼 ↔ ((invg‘ℤring)‘𝐴) ∈ 𝐼)) |
28 | 5, 27 | mpan 690 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → (𝐴 ∈ 𝐼 ↔ ((invg‘ℤring)‘𝐴) ∈ 𝐼)) |
29 | zsubrg 21455 | . . . . . . . . . . 11 ⊢ ℤ ∈ (SubRing‘ℂfld) | |
30 | subrgsubg 20593 | . . . . . . . . . . 11 ⊢ (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubGrp‘ℂfld)) | |
31 | 29, 30 | ax-mp 5 | . . . . . . . . . 10 ⊢ ℤ ∈ (SubGrp‘ℂfld) |
32 | df-zring 21475 | . . . . . . . . . . 11 ⊢ ℤring = (ℂfld ↾s ℤ) | |
33 | eqid 2734 | . . . . . . . . . . 11 ⊢ (invg‘ℂfld) = (invg‘ℂfld) | |
34 | 32, 33, 26 | subginv 19163 | . . . . . . . . . 10 ⊢ ((ℤ ∈ (SubGrp‘ℂfld) ∧ 𝐴 ∈ ℤ) → ((invg‘ℂfld)‘𝐴) = ((invg‘ℤring)‘𝐴)) |
35 | 31, 34 | mpan 690 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℤ → ((invg‘ℂfld)‘𝐴) = ((invg‘ℤring)‘𝐴)) |
36 | zcn 12615 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
37 | cnfldneg 21425 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℂ → ((invg‘ℂfld)‘𝐴) = -𝐴) | |
38 | 36, 37 | syl 17 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℤ → ((invg‘ℂfld)‘𝐴) = -𝐴) |
39 | 35, 38 | eqtr3d 2776 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → ((invg‘ℤring)‘𝐴) = -𝐴) |
40 | 39 | eleq1d 2823 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → (((invg‘ℤring)‘𝐴) ∈ 𝐼 ↔ -𝐴 ∈ 𝐼)) |
41 | 28, 40 | bitrd 279 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → (𝐴 ∈ 𝐼 ↔ -𝐴 ∈ 𝐼)) |
42 | 41 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (𝐴 ∈ 𝐼 ↔ -𝐴 ∈ 𝐼)) |
43 | zre 12614 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
44 | 43 | adantr 480 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → 𝐴 ∈ ℝ) |
45 | nnnn0 12530 | . . . . . . . . . 10 ⊢ (-𝐴 ∈ ℕ → -𝐴 ∈ ℕ0) | |
46 | 45 | nn0ge0d 12587 | . . . . . . . . 9 ⊢ (-𝐴 ∈ ℕ → 0 ≤ -𝐴) |
47 | 46 | adantl 481 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → 0 ≤ -𝐴) |
48 | 44 | le0neg1d 11831 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴)) |
49 | 47, 48 | mpbird 257 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → 𝐴 ≤ 0) |
50 | 44, 49 | absnidd 15448 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (abs‘𝐴) = -𝐴) |
51 | 50 | eleq1d 2823 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → ((abs‘𝐴) ∈ ℙ ↔ -𝐴 ∈ ℙ)) |
52 | 25, 42, 51 | 3bitr4d 311 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (𝐴 ∈ 𝐼 ↔ (abs‘𝐴) ∈ ℙ)) |
53 | 52 | adantrl 716 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝐴 ∈ 𝐼 ↔ (abs‘𝐴) ∈ ℙ)) |
54 | elznn0nn 12624 | . . . 4 ⊢ (𝐴 ∈ ℤ ↔ (𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ))) | |
55 | 54 | biimpi 216 | . . 3 ⊢ (𝐴 ∈ ℤ → (𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ))) |
56 | 23, 53, 55 | mpjaodan 960 | . 2 ⊢ (𝐴 ∈ ℤ → (𝐴 ∈ 𝐼 ↔ (abs‘𝐴) ∈ ℙ)) |
57 | 3, 56 | biadanii 822 | 1 ⊢ (𝐴 ∈ 𝐼 ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) ∈ ℙ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 class class class wbr 5147 ‘cfv 6562 ℂcc 11150 ℝcr 11151 0cc0 11152 ≤ cle 11293 -cneg 11490 ℕcn 12263 ℕ0cn0 12523 ℤcz 12610 abscabs 15269 ℙcprime 16704 invgcminusg 18964 SubGrpcsubg 19150 Ringcrg 20250 Irredcir 20372 SubRingcsubrg 20585 ℂfldccnfld 21381 ℤringczring 21474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 ax-addf 11231 ax-mulf 11232 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-tpos 8249 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-sup 9479 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-rp 13032 df-fz 13544 df-seq 14039 df-exp 14099 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-dvds 16287 df-prm 16705 df-gz 16963 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-starv 17312 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-0g 17487 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-grp 18966 df-minusg 18967 df-subg 19153 df-cmn 19814 df-abl 19815 df-mgp 20152 df-rng 20170 df-ur 20199 df-ring 20252 df-cring 20253 df-oppr 20350 df-dvdsr 20373 df-unit 20374 df-irred 20375 df-invr 20404 df-dvr 20417 df-subrng 20562 df-subrg 20586 df-drng 20747 df-cnfld 21382 df-zring 21475 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |