MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmirred Structured version   Visualization version   GIF version

Theorem prmirred 20191
Description: The irreducible elements of are exactly the prime numbers (and their negatives). (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.)
Hypothesis
Ref Expression
prmirred.i 𝐼 = (Irred‘ℤring)
Assertion
Ref Expression
prmirred (𝐴𝐼 ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) ∈ ℙ))

Proof of Theorem prmirred
StepHypRef Expression
1 prmirred.i . . 3 𝐼 = (Irred‘ℤring)
2 zringbas 20172 . . 3 ℤ = (Base‘ℤring)
31, 2irredcl 19453 . 2 (𝐴𝐼𝐴 ∈ ℤ)
4 elnn0 11891 . . . . . . 7 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
5 zringring 20169 . . . . . . . . . . 11 ring ∈ Ring
6 zring0 20176 . . . . . . . . . . . 12 0 = (0g‘ℤring)
71, 6irredn0 19452 . . . . . . . . . . 11 ((ℤring ∈ Ring ∧ 𝐴𝐼) → 𝐴 ≠ 0)
85, 7mpan 689 . . . . . . . . . 10 (𝐴𝐼𝐴 ≠ 0)
98necon2bi 3020 . . . . . . . . 9 (𝐴 = 0 → ¬ 𝐴𝐼)
109pm2.21d 121 . . . . . . . 8 (𝐴 = 0 → (𝐴𝐼𝐴 ∈ ℕ))
1110jao1i 855 . . . . . . 7 ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → (𝐴𝐼𝐴 ∈ ℕ))
124, 11sylbi 220 . . . . . 6 (𝐴 ∈ ℕ0 → (𝐴𝐼𝐴 ∈ ℕ))
13 prmnn 16011 . . . . . . 7 (𝐴 ∈ ℙ → 𝐴 ∈ ℕ)
1413a1i 11 . . . . . 6 (𝐴 ∈ ℕ0 → (𝐴 ∈ ℙ → 𝐴 ∈ ℕ))
151prmirredlem 20189 . . . . . . 7 (𝐴 ∈ ℕ → (𝐴𝐼𝐴 ∈ ℙ))
1615a1i 11 . . . . . 6 (𝐴 ∈ ℕ0 → (𝐴 ∈ ℕ → (𝐴𝐼𝐴 ∈ ℙ)))
1712, 14, 16pm5.21ndd 384 . . . . 5 (𝐴 ∈ ℕ0 → (𝐴𝐼𝐴 ∈ ℙ))
18 nn0re 11898 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
19 nn0ge0 11914 . . . . . . 7 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
2018, 19absidd 14777 . . . . . 6 (𝐴 ∈ ℕ0 → (abs‘𝐴) = 𝐴)
2120eleq1d 2877 . . . . 5 (𝐴 ∈ ℕ0 → ((abs‘𝐴) ∈ ℙ ↔ 𝐴 ∈ ℙ))
2217, 21bitr4d 285 . . . 4 (𝐴 ∈ ℕ0 → (𝐴𝐼 ↔ (abs‘𝐴) ∈ ℙ))
2322adantl 485 . . 3 ((𝐴 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴𝐼 ↔ (abs‘𝐴) ∈ ℙ))
241prmirredlem 20189 . . . . . 6 (-𝐴 ∈ ℕ → (-𝐴𝐼 ↔ -𝐴 ∈ ℙ))
2524adantl 485 . . . . 5 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (-𝐴𝐼 ↔ -𝐴 ∈ ℙ))
26 eqid 2801 . . . . . . . . 9 (invg‘ℤring) = (invg‘ℤring)
271, 26, 2irrednegb 19460 . . . . . . . 8 ((ℤring ∈ Ring ∧ 𝐴 ∈ ℤ) → (𝐴𝐼 ↔ ((invg‘ℤring)‘𝐴) ∈ 𝐼))
285, 27mpan 689 . . . . . . 7 (𝐴 ∈ ℤ → (𝐴𝐼 ↔ ((invg‘ℤring)‘𝐴) ∈ 𝐼))
29 zsubrg 20147 . . . . . . . . . . 11 ℤ ∈ (SubRing‘ℂfld)
30 subrgsubg 19537 . . . . . . . . . . 11 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubGrp‘ℂfld))
3129, 30ax-mp 5 . . . . . . . . . 10 ℤ ∈ (SubGrp‘ℂfld)
32 df-zring 20167 . . . . . . . . . . 11 ring = (ℂflds ℤ)
33 eqid 2801 . . . . . . . . . . 11 (invg‘ℂfld) = (invg‘ℂfld)
3432, 33, 26subginv 18281 . . . . . . . . . 10 ((ℤ ∈ (SubGrp‘ℂfld) ∧ 𝐴 ∈ ℤ) → ((invg‘ℂfld)‘𝐴) = ((invg‘ℤring)‘𝐴))
3531, 34mpan 689 . . . . . . . . 9 (𝐴 ∈ ℤ → ((invg‘ℂfld)‘𝐴) = ((invg‘ℤring)‘𝐴))
36 zcn 11978 . . . . . . . . . 10 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
37 cnfldneg 20120 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((invg‘ℂfld)‘𝐴) = -𝐴)
3836, 37syl 17 . . . . . . . . 9 (𝐴 ∈ ℤ → ((invg‘ℂfld)‘𝐴) = -𝐴)
3935, 38eqtr3d 2838 . . . . . . . 8 (𝐴 ∈ ℤ → ((invg‘ℤring)‘𝐴) = -𝐴)
4039eleq1d 2877 . . . . . . 7 (𝐴 ∈ ℤ → (((invg‘ℤring)‘𝐴) ∈ 𝐼 ↔ -𝐴𝐼))
4128, 40bitrd 282 . . . . . 6 (𝐴 ∈ ℤ → (𝐴𝐼 ↔ -𝐴𝐼))
4241adantr 484 . . . . 5 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (𝐴𝐼 ↔ -𝐴𝐼))
43 zre 11977 . . . . . . . 8 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
4443adantr 484 . . . . . . 7 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → 𝐴 ∈ ℝ)
45 nnnn0 11896 . . . . . . . . . 10 (-𝐴 ∈ ℕ → -𝐴 ∈ ℕ0)
4645nn0ge0d 11950 . . . . . . . . 9 (-𝐴 ∈ ℕ → 0 ≤ -𝐴)
4746adantl 485 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → 0 ≤ -𝐴)
4844le0neg1d 11204 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
4947, 48mpbird 260 . . . . . . 7 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → 𝐴 ≤ 0)
5044, 49absnidd 14768 . . . . . 6 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (abs‘𝐴) = -𝐴)
5150eleq1d 2877 . . . . 5 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → ((abs‘𝐴) ∈ ℙ ↔ -𝐴 ∈ ℙ))
5225, 42, 513bitr4d 314 . . . 4 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (𝐴𝐼 ↔ (abs‘𝐴) ∈ ℙ))
5352adantrl 715 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝐴𝐼 ↔ (abs‘𝐴) ∈ ℙ))
54 elznn0nn 11987 . . . 4 (𝐴 ∈ ℤ ↔ (𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)))
5554biimpi 219 . . 3 (𝐴 ∈ ℤ → (𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)))
5623, 53, 55mpjaodan 956 . 2 (𝐴 ∈ ℤ → (𝐴𝐼 ↔ (abs‘𝐴) ∈ ℙ))
573, 56biadanii 821 1 (𝐴𝐼 ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) ∈ ℙ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2112  wne 2990   class class class wbr 5033  cfv 6328  cc 10528  cr 10529  0cc0 10530  cle 10669  -cneg 10864  cn 11629  0cn0 11889  cz 11973  abscabs 14588  cprime 16008  invgcminusg 18099  SubGrpcsubg 18268  Ringcrg 19293  Irredcir 19389  SubRingcsubrg 19527  fldccnfld 20094  ringzring 20166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-tpos 7879  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-rp 12382  df-fz 12890  df-seq 13369  df-exp 13430  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-dvds 15603  df-prm 16009  df-gz 16259  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18101  df-minusg 18102  df-subg 18271  df-cmn 18903  df-mgp 19236  df-ur 19248  df-ring 19295  df-cring 19296  df-oppr 19372  df-dvdsr 19390  df-unit 19391  df-irred 19392  df-invr 19421  df-dvr 19432  df-drng 19500  df-subrg 19529  df-cnfld 20095  df-zring 20167
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator