MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zring0 Structured version   Visualization version   GIF version

Theorem zring0 20445
Description: The neutral element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.)
Assertion
Ref Expression
zring0 0 = (0g‘ℤring)

Proof of Theorem zring0
StepHypRef Expression
1 cncrng 20384 . . 3 fld ∈ CRing
2 crngring 19574 . . 3 (ℂfld ∈ CRing → ℂfld ∈ Ring)
3 ringmnd 19572 . . 3 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
41, 2, 3mp2b 10 . 2 fld ∈ Mnd
5 0z 12187 . 2 0 ∈ ℤ
6 zsscn 12184 . 2 ℤ ⊆ ℂ
7 df-zring 20436 . . 3 ring = (ℂflds ℤ)
8 cnfldbas 20367 . . 3 ℂ = (Base‘ℂfld)
9 cnfld0 20387 . . 3 0 = (0g‘ℂfld)
107, 8, 9ress0g 18201 . 2 ((ℂfld ∈ Mnd ∧ 0 ∈ ℤ ∧ ℤ ⊆ ℂ) → 0 = (0g‘ℤring))
114, 5, 6, 10mp3an 1463 1 0 = (0g‘ℤring)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  wcel 2110  wss 3866  cfv 6380  cc 10727  0cc0 10729  cz 12176  0gc0g 16944  Mndcmnd 18173  Ringcrg 19562  CRingccrg 19563  fldccnfld 20363  ringzring 20435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-fz 13096  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-0g 16946  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-grp 18368  df-cmn 19172  df-mgp 19505  df-ring 19564  df-cring 19565  df-cnfld 20364  df-zring 20436
This theorem is referenced by:  zringnzr  20447  zringlpirlem1  20449  zringinvg  20452  zringlpir  20454  zringndrg  20455  prmirred  20461  zrh0  20480  zndvds0  20515  lgseisenlem4  26259  zrhf1ker  31637  zlmodzxz0  45368  zlmodzxzldep  45521
  Copyright terms: Public domain W3C validator