![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zringcyg | Structured version Visualization version GIF version |
Description: The integers are a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 9-Jun-2019.) |
Ref | Expression |
---|---|
zringcyg | β’ β€ring β CycGrp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zringbas 21023 | . . 3 β’ β€ = (Baseββ€ring) | |
2 | eqid 2733 | . . 3 β’ (.gββ€ring) = (.gββ€ring) | |
3 | zsubrg 20998 | . . . . 5 β’ β€ β (SubRingββfld) | |
4 | subrgsubg 20325 | . . . . 5 β’ (β€ β (SubRingββfld) β β€ β (SubGrpββfld)) | |
5 | 3, 4 | ax-mp 5 | . . . 4 β’ β€ β (SubGrpββfld) |
6 | df-zring 21018 | . . . . 5 β’ β€ring = (βfld βΎs β€) | |
7 | 6 | subggrp 19009 | . . . 4 β’ (β€ β (SubGrpββfld) β β€ring β Grp) |
8 | 5, 7 | mp1i 13 | . . 3 β’ (β€ β β€ring β Grp) |
9 | 1zzd 12593 | . . 3 β’ (β€ β 1 β β€) | |
10 | ax-1cn 11168 | . . . . . . 7 β’ 1 β β | |
11 | cnfldmulg 20977 | . . . . . . 7 β’ ((π₯ β β€ β§ 1 β β) β (π₯(.gββfld)1) = (π₯ Β· 1)) | |
12 | 10, 11 | mpan2 690 | . . . . . 6 β’ (π₯ β β€ β (π₯(.gββfld)1) = (π₯ Β· 1)) |
13 | 1z 12592 | . . . . . . 7 β’ 1 β β€ | |
14 | eqid 2733 | . . . . . . . 8 β’ (.gββfld) = (.gββfld) | |
15 | 14, 6, 2 | subgmulg 19020 | . . . . . . 7 β’ ((β€ β (SubGrpββfld) β§ π₯ β β€ β§ 1 β β€) β (π₯(.gββfld)1) = (π₯(.gββ€ring)1)) |
16 | 5, 13, 15 | mp3an13 1453 | . . . . . 6 β’ (π₯ β β€ β (π₯(.gββfld)1) = (π₯(.gββ€ring)1)) |
17 | zcn 12563 | . . . . . . 7 β’ (π₯ β β€ β π₯ β β) | |
18 | 17 | mulridd 11231 | . . . . . 6 β’ (π₯ β β€ β (π₯ Β· 1) = π₯) |
19 | 12, 16, 18 | 3eqtr3rd 2782 | . . . . 5 β’ (π₯ β β€ β π₯ = (π₯(.gββ€ring)1)) |
20 | oveq1 7416 | . . . . . 6 β’ (π§ = π₯ β (π§(.gββ€ring)1) = (π₯(.gββ€ring)1)) | |
21 | 20 | rspceeqv 3634 | . . . . 5 β’ ((π₯ β β€ β§ π₯ = (π₯(.gββ€ring)1)) β βπ§ β β€ π₯ = (π§(.gββ€ring)1)) |
22 | 19, 21 | mpdan 686 | . . . 4 β’ (π₯ β β€ β βπ§ β β€ π₯ = (π§(.gββ€ring)1)) |
23 | 22 | adantl 483 | . . 3 β’ ((β€ β§ π₯ β β€) β βπ§ β β€ π₯ = (π§(.gββ€ring)1)) |
24 | 1, 2, 8, 9, 23 | iscygd 19755 | . 2 β’ (β€ β β€ring β CycGrp) |
25 | 24 | mptru 1549 | 1 β’ β€ring β CycGrp |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 β€wtru 1543 β wcel 2107 βwrex 3071 βcfv 6544 (class class class)co 7409 βcc 11108 1c1 11111 Β· cmul 11115 β€cz 12558 Grpcgrp 18819 .gcmg 18950 SubGrpcsubg 19000 CycGrpccyg 19745 SubRingcsubrg 20315 βfldccnfld 20944 β€ringczring 21017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-addf 11189 ax-mulf 11190 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-fz 13485 df-seq 13967 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-starv 17212 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-0g 17387 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-minusg 18823 df-mulg 18951 df-subg 19003 df-cmn 19650 df-cyg 19746 df-mgp 19988 df-ur 20005 df-ring 20058 df-cring 20059 df-subrg 20317 df-cnfld 20945 df-zring 21018 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |