MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zringcyg Structured version   Visualization version   GIF version

Theorem zringcyg 21394
Description: The integers are a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 9-Jun-2019.)
Assertion
Ref Expression
zringcyg ring ∈ CycGrp

Proof of Theorem zringcyg
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringbas 21378 . . 3 ℤ = (Base‘ℤring)
2 eqid 2729 . . 3 (.g‘ℤring) = (.g‘ℤring)
3 zsubrg 21345 . . . . 5 ℤ ∈ (SubRing‘ℂfld)
4 subrgsubg 20480 . . . . 5 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubGrp‘ℂfld))
53, 4ax-mp 5 . . . 4 ℤ ∈ (SubGrp‘ℂfld)
6 df-zring 21372 . . . . 5 ring = (ℂflds ℤ)
76subggrp 19026 . . . 4 (ℤ ∈ (SubGrp‘ℂfld) → ℤring ∈ Grp)
85, 7mp1i 13 . . 3 (⊤ → ℤring ∈ Grp)
9 1zzd 12524 . . 3 (⊤ → 1 ∈ ℤ)
10 ax-1cn 11086 . . . . . . 7 1 ∈ ℂ
11 cnfldmulg 21328 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 1 ∈ ℂ) → (𝑥(.g‘ℂfld)1) = (𝑥 · 1))
1210, 11mpan2 691 . . . . . 6 (𝑥 ∈ ℤ → (𝑥(.g‘ℂfld)1) = (𝑥 · 1))
13 1z 12523 . . . . . . 7 1 ∈ ℤ
14 eqid 2729 . . . . . . . 8 (.g‘ℂfld) = (.g‘ℂfld)
1514, 6, 2subgmulg 19037 . . . . . . 7 ((ℤ ∈ (SubGrp‘ℂfld) ∧ 𝑥 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑥(.g‘ℂfld)1) = (𝑥(.g‘ℤring)1))
165, 13, 15mp3an13 1454 . . . . . 6 (𝑥 ∈ ℤ → (𝑥(.g‘ℂfld)1) = (𝑥(.g‘ℤring)1))
17 zcn 12494 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
1817mulridd 11151 . . . . . 6 (𝑥 ∈ ℤ → (𝑥 · 1) = 𝑥)
1912, 16, 183eqtr3rd 2773 . . . . 5 (𝑥 ∈ ℤ → 𝑥 = (𝑥(.g‘ℤring)1))
20 oveq1 7360 . . . . . 6 (𝑧 = 𝑥 → (𝑧(.g‘ℤring)1) = (𝑥(.g‘ℤring)1))
2120rspceeqv 3602 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑥 = (𝑥(.g‘ℤring)1)) → ∃𝑧 ∈ ℤ 𝑥 = (𝑧(.g‘ℤring)1))
2219, 21mpdan 687 . . . 4 (𝑥 ∈ ℤ → ∃𝑧 ∈ ℤ 𝑥 = (𝑧(.g‘ℤring)1))
2322adantl 481 . . 3 ((⊤ ∧ 𝑥 ∈ ℤ) → ∃𝑧 ∈ ℤ 𝑥 = (𝑧(.g‘ℤring)1))
241, 2, 8, 9, 23iscygd 19784 . 2 (⊤ → ℤring ∈ CycGrp)
2524mptru 1547 1 ring ∈ CycGrp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wtru 1541  wcel 2109  wrex 3053  cfv 6486  (class class class)co 7353  cc 11026  1c1 11029   · cmul 11033  cz 12489  Grpcgrp 18830  .gcmg 18964  SubGrpcsubg 19017  CycGrpccyg 19774  SubRingcsubrg 20472  fldccnfld 21279  ringczring 21371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-seq 13927  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-mulg 18965  df-subg 19020  df-cmn 19679  df-abl 19680  df-cyg 19775  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-subrng 20449  df-subrg 20473  df-cnfld 21280  df-zring 21372
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator