MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zringcyg Structured version   Visualization version   GIF version

Theorem zringcyg 20128
Description: The integers are a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 9-Jun-2019.)
Assertion
Ref Expression
zringcyg ring ∈ CycGrp

Proof of Theorem zringcyg
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringbas 20113 . . 3 ℤ = (Base‘ℤring)
2 eqid 2765 . . 3 (.g‘ℤring) = (.g‘ℤring)
3 zsubrg 20088 . . . . 5 ℤ ∈ (SubRing‘ℂfld)
4 subrgsubg 19071 . . . . 5 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubGrp‘ℂfld))
53, 4ax-mp 5 . . . 4 ℤ ∈ (SubGrp‘ℂfld)
6 df-zring 20108 . . . . 5 ring = (ℂflds ℤ)
76subggrp 17877 . . . 4 (ℤ ∈ (SubGrp‘ℂfld) → ℤring ∈ Grp)
85, 7mp1i 13 . . 3 (⊤ → ℤring ∈ Grp)
9 1zzd 11661 . . 3 (⊤ → 1 ∈ ℤ)
10 ax-1cn 10251 . . . . . . 7 1 ∈ ℂ
11 cnfldmulg 20067 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 1 ∈ ℂ) → (𝑥(.g‘ℂfld)1) = (𝑥 · 1))
1210, 11mpan2 682 . . . . . 6 (𝑥 ∈ ℤ → (𝑥(.g‘ℂfld)1) = (𝑥 · 1))
13 1z 11660 . . . . . . 7 1 ∈ ℤ
14 eqid 2765 . . . . . . . 8 (.g‘ℂfld) = (.g‘ℂfld)
1514, 6, 2subgmulg 17888 . . . . . . 7 ((ℤ ∈ (SubGrp‘ℂfld) ∧ 𝑥 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑥(.g‘ℂfld)1) = (𝑥(.g‘ℤring)1))
165, 13, 15mp3an13 1576 . . . . . 6 (𝑥 ∈ ℤ → (𝑥(.g‘ℂfld)1) = (𝑥(.g‘ℤring)1))
17 zcn 11634 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
1817mulid1d 10315 . . . . . 6 (𝑥 ∈ ℤ → (𝑥 · 1) = 𝑥)
1912, 16, 183eqtr3rd 2808 . . . . 5 (𝑥 ∈ ℤ → 𝑥 = (𝑥(.g‘ℤring)1))
20 oveq1 6853 . . . . . 6 (𝑧 = 𝑥 → (𝑧(.g‘ℤring)1) = (𝑥(.g‘ℤring)1))
2120rspceeqv 3480 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑥 = (𝑥(.g‘ℤring)1)) → ∃𝑧 ∈ ℤ 𝑥 = (𝑧(.g‘ℤring)1))
2219, 21mpdan 678 . . . 4 (𝑥 ∈ ℤ → ∃𝑧 ∈ ℤ 𝑥 = (𝑧(.g‘ℤring)1))
2322adantl 473 . . 3 ((⊤ ∧ 𝑥 ∈ ℤ) → ∃𝑧 ∈ ℤ 𝑥 = (𝑧(.g‘ℤring)1))
241, 2, 8, 9, 23iscygd 18571 . 2 (⊤ → ℤring ∈ CycGrp)
2524mptru 1660 1 ring ∈ CycGrp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1652  wtru 1653  wcel 2155  wrex 3056  cfv 6070  (class class class)co 6846  cc 10191  1c1 10194   · cmul 10198  cz 11629  Grpcgrp 17705  .gcmg 17823  SubGrpcsubg 17868  CycGrpccyg 18561  SubRingcsubrg 19061  fldccnfld 20035  ringzring 20107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-inf2 8757  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-addf 10272  ax-mulf 10273
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-om 7268  df-1st 7370  df-2nd 7371  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-oadd 7772  df-er 7951  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10527  df-neg 10528  df-nn 11280  df-2 11340  df-3 11341  df-4 11342  df-5 11343  df-6 11344  df-7 11345  df-8 11346  df-9 11347  df-n0 11544  df-z 11630  df-dec 11747  df-uz 11894  df-fz 12541  df-seq 13016  df-struct 16148  df-ndx 16149  df-slot 16150  df-base 16152  df-sets 16153  df-ress 16154  df-plusg 16243  df-mulr 16244  df-starv 16245  df-tset 16249  df-ple 16250  df-ds 16252  df-unif 16253  df-0g 16384  df-mgm 17524  df-sgrp 17566  df-mnd 17577  df-grp 17708  df-minusg 17709  df-mulg 17824  df-subg 17871  df-cmn 18477  df-cyg 18562  df-mgp 18773  df-ur 18785  df-ring 18832  df-cring 18833  df-subrg 19063  df-cnfld 20036  df-zring 20108
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator