MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgseisenlem4 Structured version   Visualization version   GIF version

Theorem lgseisenlem4 25962
Description: Lemma for lgseisen 25963. The function 𝑀 is an injection (and hence a bijection by the pigeonhole principle). (Contributed by Mario Carneiro, 18-Jun-2015.) (Proof shortened by AV, 15-Jun-2019.)
Hypotheses
Ref Expression
lgseisen.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgseisen.2 (𝜑𝑄 ∈ (ℙ ∖ {2}))
lgseisen.3 (𝜑𝑃𝑄)
lgseisen.4 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃)
lgseisen.5 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))
lgseisen.6 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃)
lgseisen.7 𝑌 = (ℤ/nℤ‘𝑃)
lgseisen.8 𝐺 = (mulGrp‘𝑌)
lgseisen.9 𝐿 = (ℤRHom‘𝑌)
Assertion
Ref Expression
lgseisenlem4 (𝜑 → ((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐿   𝑥,𝑦,𝑃   𝜑,𝑥,𝑦   𝑦,𝑀   𝑥,𝑄,𝑦   𝑥,𝑌   𝑥,𝑆
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝑆(𝑦)   𝐺(𝑦)   𝐿(𝑦)   𝑀(𝑥)   𝑌(𝑦)

Proof of Theorem lgseisenlem4
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 zringbas 20169 . . . . 5 ℤ = (Base‘ℤring)
2 zring0 20173 . . . . 5 0 = (0g‘ℤring)
3 zringabl 20167 . . . . . 6 ring ∈ Abel
4 ablcmn 18905 . . . . . 6 (ℤring ∈ Abel → ℤring ∈ CMnd)
53, 4mp1i 13 . . . . 5 (𝜑 → ℤring ∈ CMnd)
6 lgseisen.1 . . . . . . . . . 10 (𝜑𝑃 ∈ (ℙ ∖ {2}))
76eldifad 3893 . . . . . . . . 9 (𝜑𝑃 ∈ ℙ)
8 lgseisen.7 . . . . . . . . . 10 𝑌 = (ℤ/nℤ‘𝑃)
98znfld 20252 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑌 ∈ Field)
107, 9syl 17 . . . . . . . 8 (𝜑𝑌 ∈ Field)
11 isfld 19504 . . . . . . . . 9 (𝑌 ∈ Field ↔ (𝑌 ∈ DivRing ∧ 𝑌 ∈ CRing))
1211simprbi 500 . . . . . . . 8 (𝑌 ∈ Field → 𝑌 ∈ CRing)
1310, 12syl 17 . . . . . . 7 (𝜑𝑌 ∈ CRing)
14 lgseisen.8 . . . . . . . 8 𝐺 = (mulGrp‘𝑌)
1514crngmgp 19298 . . . . . . 7 (𝑌 ∈ CRing → 𝐺 ∈ CMnd)
1613, 15syl 17 . . . . . 6 (𝜑𝐺 ∈ CMnd)
17 cmnmnd 18914 . . . . . 6 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
1816, 17syl 17 . . . . 5 (𝜑𝐺 ∈ Mnd)
19 fzfid 13336 . . . . 5 (𝜑 → (1...((𝑃 − 1) / 2)) ∈ Fin)
20 crngring 19302 . . . . . . . . . 10 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
2113, 20syl 17 . . . . . . . . 9 (𝜑𝑌 ∈ Ring)
22 lgseisen.9 . . . . . . . . . 10 𝐿 = (ℤRHom‘𝑌)
2322zrhrhm 20205 . . . . . . . . 9 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
2421, 23syl 17 . . . . . . . 8 (𝜑𝐿 ∈ (ℤring RingHom 𝑌))
25 eqid 2798 . . . . . . . . 9 (Base‘𝑌) = (Base‘𝑌)
261, 25rhmf 19474 . . . . . . . 8 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
2724, 26syl 17 . . . . . . 7 (𝜑𝐿:ℤ⟶(Base‘𝑌))
28 m1expcl 13448 . . . . . . . 8 (𝑘 ∈ ℤ → (-1↑𝑘) ∈ ℤ)
2928adantl 485 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → (-1↑𝑘) ∈ ℤ)
3027, 29cofmpt 6871 . . . . . 6 (𝜑 → (𝐿 ∘ (𝑘 ∈ ℤ ↦ (-1↑𝑘))) = (𝑘 ∈ ℤ ↦ (𝐿‘(-1↑𝑘))))
31 zringmpg 20185 . . . . . . . . 9 ((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring)
3231, 14rhmmhm 19470 . . . . . . . 8 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom 𝐺))
3324, 32syl 17 . . . . . . 7 (𝜑𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom 𝐺))
34 neg1cn 11739 . . . . . . . . . . 11 -1 ∈ ℂ
35 neg1ne0 11741 . . . . . . . . . . 11 -1 ≠ 0
36 eqid 2798 . . . . . . . . . . . 12 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
37 eqid 2798 . . . . . . . . . . . 12 ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
3836, 37expghm 20189 . . . . . . . . . . 11 ((-1 ∈ ℂ ∧ -1 ≠ 0) → (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring GrpHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))))
3934, 35, 38mp2an 691 . . . . . . . . . 10 (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring GrpHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
40 ghmmhm 18360 . . . . . . . . . 10 ((𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring GrpHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))))
4139, 40ax-mp 5 . . . . . . . . 9 (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
42 cnring 20113 . . . . . . . . . 10 fld ∈ Ring
43 cnfldbas 20095 . . . . . . . . . . . 12 ℂ = (Base‘ℂfld)
44 cnfld0 20115 . . . . . . . . . . . 12 0 = (0g‘ℂfld)
45 cndrng 20120 . . . . . . . . . . . 12 fld ∈ DivRing
4643, 44, 45drngui 19501 . . . . . . . . . . 11 (ℂ ∖ {0}) = (Unit‘ℂfld)
4746, 36unitsubm 19416 . . . . . . . . . 10 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)))
4842, 47ax-mp 5 . . . . . . . . 9 (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld))
4937resmhm2 17978 . . . . . . . . 9 (((𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) ∧ (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld))) → (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom (mulGrp‘ℂfld)))
5041, 48, 49mp2an 691 . . . . . . . 8 (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom (mulGrp‘ℂfld))
51 zsubrg 20144 . . . . . . . . . 10 ℤ ∈ (SubRing‘ℂfld)
5236subrgsubm 19541 . . . . . . . . . 10 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)))
5351, 52ax-mp 5 . . . . . . . . 9 ℤ ∈ (SubMnd‘(mulGrp‘ℂfld))
5429fmpttd 6856 . . . . . . . . . 10 (𝜑 → (𝑘 ∈ ℤ ↦ (-1↑𝑘)):ℤ⟶ℤ)
5554frnd 6494 . . . . . . . . 9 (𝜑 → ran (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ⊆ ℤ)
56 eqid 2798 . . . . . . . . . 10 ((mulGrp‘ℂfld) ↾s ℤ) = ((mulGrp‘ℂfld) ↾s ℤ)
5756resmhm2b 17979 . . . . . . . . 9 ((ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ ran (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ⊆ ℤ) → ((𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom (mulGrp‘ℂfld)) ↔ (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s ℤ))))
5853, 55, 57sylancr 590 . . . . . . . 8 (𝜑 → ((𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom (mulGrp‘ℂfld)) ↔ (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s ℤ))))
5950, 58mpbii 236 . . . . . . 7 (𝜑 → (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s ℤ)))
60 mhmco 17980 . . . . . . 7 ((𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom 𝐺) ∧ (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s ℤ))) → (𝐿 ∘ (𝑘 ∈ ℤ ↦ (-1↑𝑘))) ∈ (ℤring MndHom 𝐺))
6133, 59, 60syl2anc 587 . . . . . 6 (𝜑 → (𝐿 ∘ (𝑘 ∈ ℤ ↦ (-1↑𝑘))) ∈ (ℤring MndHom 𝐺))
6230, 61eqeltrrd 2891 . . . . 5 (𝜑 → (𝑘 ∈ ℤ ↦ (𝐿‘(-1↑𝑘))) ∈ (ℤring MndHom 𝐺))
63 lgseisen.2 . . . . . . . . . . 11 (𝜑𝑄 ∈ (ℙ ∖ {2}))
6463gausslemma2dlem0a 25940 . . . . . . . . . 10 (𝜑𝑄 ∈ ℕ)
6564nnred 11640 . . . . . . . . 9 (𝜑𝑄 ∈ ℝ)
666gausslemma2dlem0a 25940 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
6765, 66nndivred 11679 . . . . . . . 8 (𝜑 → (𝑄 / 𝑃) ∈ ℝ)
6867adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 / 𝑃) ∈ ℝ)
69 2nn 11698 . . . . . . . . 9 2 ∈ ℕ
70 elfznn 12931 . . . . . . . . . 10 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℕ)
7170adantl 485 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℕ)
72 nnmulcl 11649 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (2 · 𝑥) ∈ ℕ)
7369, 71, 72sylancr 590 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℕ)
7473nnred 11640 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℝ)
7568, 74remulcld 10660 . . . . . 6 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 / 𝑃) · (2 · 𝑥)) ∈ ℝ)
7675flcld 13163 . . . . 5 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ)
77 eqid 2798 . . . . . 6 (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))
78 fvexd 6660 . . . . . 6 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ V)
79 c0ex 10624 . . . . . . 7 0 ∈ V
8079a1i 11 . . . . . 6 (𝜑 → 0 ∈ V)
8177, 19, 78, 80fsuppmptdm 8828 . . . . 5 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) finSupp 0)
82 oveq2 7143 . . . . . 6 (𝑘 = (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) → (-1↑𝑘) = (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
8382fveq2d 6649 . . . . 5 (𝑘 = (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) → (𝐿‘(-1↑𝑘)) = (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
84 oveq2 7143 . . . . . 6 (𝑘 = (ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) → (-1↑𝑘) = (-1↑(ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
8584fveq2d 6649 . . . . 5 (𝑘 = (ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) → (𝐿‘(-1↑𝑘)) = (𝐿‘(-1↑(ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))))
861, 2, 5, 18, 19, 62, 76, 81, 83, 85gsummhm2 19052 . . . 4 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) = (𝐿‘(-1↑(ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))))
8714, 25mgpbas 19238 . . . . . . 7 (Base‘𝑌) = (Base‘𝐺)
88 eqid 2798 . . . . . . . 8 (.r𝑌) = (.r𝑌)
8914, 88mgpplusg 19236 . . . . . . 7 (.r𝑌) = (+g𝐺)
9027adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝐿:ℤ⟶(Base‘𝑌))
91 m1expcl 13448 . . . . . . . . 9 ((⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ → (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ)
9276, 91syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ)
9390, 92ffvelrnd 6829 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ∈ (Base‘𝑌))
94 neg1z 12006 . . . . . . . . . 10 -1 ∈ ℤ
95 lgseisen.4 . . . . . . . . . . 11 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃)
9663eldifad 3893 . . . . . . . . . . . . . . 15 (𝜑𝑄 ∈ ℙ)
9796adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℙ)
98 prmz 16009 . . . . . . . . . . . . . 14 (𝑄 ∈ ℙ → 𝑄 ∈ ℤ)
9997, 98syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℤ)
10073nnzd 12074 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℤ)
10199, 100zmulcld 12081 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℤ)
1027adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℙ)
103 prmnn 16008 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
104102, 103syl 17 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℕ)
105101, 104zmodcld 13255 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) mod 𝑃) ∈ ℕ0)
10695, 105eqeltrid 2894 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 ∈ ℕ0)
107 zexpcl 13440 . . . . . . . . . 10 ((-1 ∈ ℤ ∧ 𝑅 ∈ ℕ0) → (-1↑𝑅) ∈ ℤ)
10894, 106, 107sylancr 590 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑅) ∈ ℤ)
109108, 99zmulcld 12081 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑅) · 𝑄) ∈ ℤ)
11090, 109ffvelrnd 6829 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘((-1↑𝑅) · 𝑄)) ∈ (Base‘𝑌))
111 eqid 2798 . . . . . . 7 (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
112 eqid 2798 . . . . . . 7 (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))
11387, 89, 16, 19, 93, 110, 111, 112gsummptfidmadd2 19039 . . . . . 6 (𝜑 → (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘f (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))) = ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))))
114 eqidd 2799 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
115 eqidd 2799 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))
11619, 93, 110, 114, 115offval2 7406 . . . . . . . 8 (𝜑 → ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘f (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r𝑌)(𝐿‘((-1↑𝑅) · 𝑄)))))
11724adantr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝐿 ∈ (ℤring RingHom 𝑌))
118 zringmulr 20172 . . . . . . . . . . . 12 · = (.r‘ℤring)
1191, 118, 88rhmmul 19475 . . . . . . . . . . 11 ((𝐿 ∈ (ℤring RingHom 𝑌) ∧ (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ ∧ ((-1↑𝑅) · 𝑄) ∈ ℤ) → (𝐿‘((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄))) = ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r𝑌)(𝐿‘((-1↑𝑅) · 𝑄))))
120117, 92, 109, 119syl3anc 1368 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄))) = ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r𝑌)(𝐿‘((-1↑𝑅) · 𝑄))))
121101zred 12075 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℝ)
122104nnrpd 12417 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℝ+)
123 modval 13234 . . . . . . . . . . . . . . . . . . . 20 (((𝑄 · (2 · 𝑥)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((𝑄 · (2 · 𝑥)) mod 𝑃) = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃)))))
124121, 122, 123syl2anc 587 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) mod 𝑃) = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃)))))
12595, 124syl5eq 2845 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃)))))
12699zcnd 12076 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℂ)
12773nncnd 11641 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℂ)
128104nncnd 11641 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℂ)
129104nnne0d 11675 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ≠ 0)
130126, 127, 128, 129div23d 11442 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) / 𝑃) = ((𝑄 / 𝑃) · (2 · 𝑥)))
131130fveq2d 6649 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃)) = (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))
132131oveq2d 7151 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃))) = (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
133132oveq2d 7151 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃)))) = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
134125, 133eqtrd 2833 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
135134oveq2d 7151 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅) = ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
136 prmz 16009 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
137102, 136syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℤ)
138137, 76zmulcld 12081 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ)
139138zcnd 12076 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℂ)
140101zcnd 12076 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℂ)
141139, 140pncan3d 10989 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) = (𝑄 · (2 · 𝑥)))
142 2cnd 11703 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈ ℂ)
14371nncnd 11641 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℂ)
144126, 142, 143mul12d 10838 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) = (2 · (𝑄 · 𝑥)))
145135, 141, 1443eqtrd 2837 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅) = (2 · (𝑄 · 𝑥)))
146145oveq2d 7151 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅)) = (-1↑(2 · (𝑄 · 𝑥))))
14734a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → -1 ∈ ℂ)
14835a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → -1 ≠ 0)
149106nn0zd 12073 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 ∈ ℤ)
150 expaddz 13469 . . . . . . . . . . . . . . . 16 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ ∧ 𝑅 ∈ ℤ)) → (-1↑((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅)) = ((-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) · (-1↑𝑅)))
151147, 148, 138, 149, 150syl22anc 837 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅)) = ((-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) · (-1↑𝑅)))
152 expmulz 13471 . . . . . . . . . . . . . . . . . 18 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝑃 ∈ ℤ ∧ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ)) → (-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = ((-1↑𝑃)↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
153147, 148, 137, 76, 152syl22anc 837 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = ((-1↑𝑃)↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
154 1cnd 10625 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 1 ∈ ℂ)
155 eldifsni 4683 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
1566, 155syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑃 ≠ 2)
157156necomd 3042 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 2 ≠ 𝑃)
158157neneqd 2992 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ¬ 2 = 𝑃)
159158adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ¬ 2 = 𝑃)
160 2z 12002 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℤ
161 uzid 12246 . . . . . . . . . . . . . . . . . . . . . . 23 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
162160, 161ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ (ℤ‘2)
163 dvdsprm 16037 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (2 ∥ 𝑃 ↔ 2 = 𝑃))
164162, 102, 163sylancr 590 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 ∥ 𝑃 ↔ 2 = 𝑃))
165159, 164mtbird 328 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ¬ 2 ∥ 𝑃)
166 oexpneg 15686 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℂ ∧ 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (-1↑𝑃) = -(1↑𝑃))
167154, 104, 165, 166syl3anc 1368 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑃) = -(1↑𝑃))
168 1exp 13454 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℤ → (1↑𝑃) = 1)
169137, 168syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (1↑𝑃) = 1)
170169negeqd 10869 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → -(1↑𝑃) = -1)
171167, 170eqtrd 2833 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑃) = -1)
172171oveq1d 7150 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑃)↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
173153, 172eqtrd 2833 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
174173oveq1d 7150 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) · (-1↑𝑅)) = ((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅)))
175151, 174eqtrd 2833 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅)) = ((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅)))
176 nnmulcl 11649 . . . . . . . . . . . . . . . . . 18 ((𝑄 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (𝑄 · 𝑥) ∈ ℕ)
17764, 70, 176syl2an 598 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · 𝑥) ∈ ℕ)
178177nnnn0d 11943 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · 𝑥) ∈ ℕ0)
179 2nn0 11902 . . . . . . . . . . . . . . . . 17 2 ∈ ℕ0
180179a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈ ℕ0)
181147, 178, 180expmuld 13509 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(2 · (𝑄 · 𝑥))) = ((-1↑2)↑(𝑄 · 𝑥)))
182 neg1sqe1 13555 . . . . . . . . . . . . . . . . 17 (-1↑2) = 1
183182oveq1i 7145 . . . . . . . . . . . . . . . 16 ((-1↑2)↑(𝑄 · 𝑥)) = (1↑(𝑄 · 𝑥))
184177nnzd 12074 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · 𝑥) ∈ ℤ)
185 1exp 13454 . . . . . . . . . . . . . . . . 17 ((𝑄 · 𝑥) ∈ ℤ → (1↑(𝑄 · 𝑥)) = 1)
186184, 185syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (1↑(𝑄 · 𝑥)) = 1)
187183, 186syl5eq 2845 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑2)↑(𝑄 · 𝑥)) = 1)
188181, 187eqtrd 2833 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(2 · (𝑄 · 𝑥))) = 1)
189146, 175, 1883eqtr3d 2841 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅)) = 1)
190189oveq1d 7150 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅)) · 𝑄) = (1 · 𝑄))
19192zcnd 12076 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℂ)
192108zcnd 12076 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑅) ∈ ℂ)
193191, 192, 126mulassd 10653 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅)) · 𝑄) = ((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄)))
194126mulid2d 10648 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (1 · 𝑄) = 𝑄)
195190, 193, 1943eqtr3d 2841 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄)) = 𝑄)
196195fveq2d 6649 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄))) = (𝐿𝑄))
197120, 196eqtr3d 2835 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r𝑌)(𝐿‘((-1↑𝑅) · 𝑄))) = (𝐿𝑄))
198197mpteq2dva 5125 . . . . . . . 8 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r𝑌)(𝐿‘((-1↑𝑅) · 𝑄)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄)))
199116, 198eqtrd 2833 . . . . . . 7 (𝜑 → ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘f (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄)))
200199oveq2d 7151 . . . . . 6 (𝜑 → (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘f (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄))))
201 lgseisen.3 . . . . . . . 8 (𝜑𝑃𝑄)
202 lgseisen.5 . . . . . . . 8 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))
203 lgseisen.6 . . . . . . . 8 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃)
2046, 63, 201, 95, 202, 203, 8, 14, 22lgseisenlem3 25961 . . . . . . 7 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (1r𝑌))
205204oveq2d 7151 . . . . . 6 (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))) = ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r𝑌)(1r𝑌)))
206113, 200, 2053eqtr3rd 2842 . . . . 5 (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r𝑌)(1r𝑌)) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄))))
207 eqid 2798 . . . . . . 7 (0g𝐺) = (0g𝐺)
20893fmpttd 6856 . . . . . . 7 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))):(1...((𝑃 − 1) / 2))⟶(Base‘𝑌))
209 fvexd 6660 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ∈ V)
210 fvexd 6660 . . . . . . . 8 (𝜑 → (0g𝐺) ∈ V)
211111, 19, 209, 210fsuppmptdm 8828 . . . . . . 7 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) finSupp (0g𝐺))
21287, 207, 16, 19, 208, 211gsumcl 19028 . . . . . 6 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) ∈ (Base‘𝑌))
213 eqid 2798 . . . . . . 7 (1r𝑌) = (1r𝑌)
21425, 88, 213ringridm 19318 . . . . . 6 ((𝑌 ∈ Ring ∧ (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) ∈ (Base‘𝑌)) → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r𝑌)(1r𝑌)) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))))
21521, 212, 214syl2anc 587 . . . . 5 (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r𝑌)(1r𝑌)) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))))
21696, 98syl 17 . . . . . . . 8 (𝜑𝑄 ∈ ℤ)
21727, 216ffvelrnd 6829 . . . . . . 7 (𝜑 → (𝐿𝑄) ∈ (Base‘𝑌))
218 eqid 2798 . . . . . . . 8 (.g𝐺) = (.g𝐺)
21987, 218gsumconst 19047 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (1...((𝑃 − 1) / 2)) ∈ Fin ∧ (𝐿𝑄) ∈ (Base‘𝑌)) → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄))) = ((♯‘(1...((𝑃 − 1) / 2)))(.g𝐺)(𝐿𝑄)))
22018, 19, 217, 219syl3anc 1368 . . . . . 6 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄))) = ((♯‘(1...((𝑃 − 1) / 2)))(.g𝐺)(𝐿𝑄)))
221 oddprm 16137 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
2226, 221syl 17 . . . . . . . . 9 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
223222nnnn0d 11943 . . . . . . . 8 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
224 hashfz1 13702 . . . . . . . 8 (((𝑃 − 1) / 2) ∈ ℕ0 → (♯‘(1...((𝑃 − 1) / 2))) = ((𝑃 − 1) / 2))
225223, 224syl 17 . . . . . . 7 (𝜑 → (♯‘(1...((𝑃 − 1) / 2))) = ((𝑃 − 1) / 2))
226225oveq1d 7150 . . . . . 6 (𝜑 → ((♯‘(1...((𝑃 − 1) / 2)))(.g𝐺)(𝐿𝑄)) = (((𝑃 − 1) / 2)(.g𝐺)(𝐿𝑄)))
22731, 1mgpbas 19238 . . . . . . . . 9 ℤ = (Base‘((mulGrp‘ℂfld) ↾s ℤ))
228 eqid 2798 . . . . . . . . 9 (.g‘((mulGrp‘ℂfld) ↾s ℤ)) = (.g‘((mulGrp‘ℂfld) ↾s ℤ))
229227, 228, 218mhmmulg 18260 . . . . . . . 8 ((𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom 𝐺) ∧ ((𝑃 − 1) / 2) ∈ ℕ0𝑄 ∈ ℤ) → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑄)) = (((𝑃 − 1) / 2)(.g𝐺)(𝐿𝑄)))
23033, 223, 216, 229syl3anc 1368 . . . . . . 7 (𝜑 → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑄)) = (((𝑃 − 1) / 2)(.g𝐺)(𝐿𝑄)))
23153a1i 11 . . . . . . . . . 10 (𝜑 → ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)))
232 eqid 2798 . . . . . . . . . . 11 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
233232, 56, 228submmulg 18263 . . . . . . . . . 10 ((ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ ((𝑃 − 1) / 2) ∈ ℕ0𝑄 ∈ ℤ) → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝑄) = (((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑄))
234231, 223, 216, 233syl3anc 1368 . . . . . . . . 9 (𝜑 → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝑄) = (((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑄))
235216zcnd 12076 . . . . . . . . . 10 (𝜑𝑄 ∈ ℂ)
236 cnfldexp 20124 . . . . . . . . . 10 ((𝑄 ∈ ℂ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝑄) = (𝑄↑((𝑃 − 1) / 2)))
237235, 223, 236syl2anc 587 . . . . . . . . 9 (𝜑 → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝑄) = (𝑄↑((𝑃 − 1) / 2)))
238234, 237eqtr3d 2835 . . . . . . . 8 (𝜑 → (((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑄) = (𝑄↑((𝑃 − 1) / 2)))
239238fveq2d 6649 . . . . . . 7 (𝜑 → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑄)) = (𝐿‘(𝑄↑((𝑃 − 1) / 2))))
240230, 239eqtr3d 2835 . . . . . 6 (𝜑 → (((𝑃 − 1) / 2)(.g𝐺)(𝐿𝑄)) = (𝐿‘(𝑄↑((𝑃 − 1) / 2))))
241220, 226, 2403eqtrd 2837 . . . . 5 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄))) = (𝐿‘(𝑄↑((𝑃 − 1) / 2))))
242206, 215, 2413eqtr3d 2841 . . . 4 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) = (𝐿‘(𝑄↑((𝑃 − 1) / 2))))
243 subrgsubg 19534 . . . . . . . . . 10 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubGrp‘ℂfld))
24451, 243ax-mp 5 . . . . . . . . 9 ℤ ∈ (SubGrp‘ℂfld)
245 subgsubm 18293 . . . . . . . . 9 (ℤ ∈ (SubGrp‘ℂfld) → ℤ ∈ (SubMnd‘ℂfld))
246244, 245mp1i 13 . . . . . . . 8 (𝜑 → ℤ ∈ (SubMnd‘ℂfld))
24776fmpttd 6856 . . . . . . . 8 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))):(1...((𝑃 − 1) / 2))⟶ℤ)
248 df-zring 20164 . . . . . . . 8 ring = (ℂflds ℤ)
24919, 246, 247, 248gsumsubm 17991 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = (ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
25076zcnd 12076 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℂ)
25119, 250gsumfsum 20158 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))
252249, 251eqtr3d 2835 . . . . . 6 (𝜑 → (ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))
253252oveq2d 7151 . . . . 5 (𝜑 → (-1↑(ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
254253fveq2d 6649 . . . 4 (𝜑 → (𝐿‘(-1↑(ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) = (𝐿‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
25586, 242, 2543eqtr3d 2841 . . 3 (𝜑 → (𝐿‘(𝑄↑((𝑃 − 1) / 2))) = (𝐿‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
25666nnnn0d 11943 . . . 4 (𝜑𝑃 ∈ ℕ0)
257 zexpcl 13440 . . . . 5 ((𝑄 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝑄↑((𝑃 − 1) / 2)) ∈ ℤ)
258216, 223, 257syl2anc 587 . . . 4 (𝜑 → (𝑄↑((𝑃 − 1) / 2)) ∈ ℤ)
25919, 76fsumzcl 15084 . . . . 5 (𝜑 → Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ)
260 m1expcl 13448 . . . . 5 𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ)
261259, 260syl 17 . . . 4 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ)
2628, 22zndvds 20241 . . . 4 ((𝑃 ∈ ℕ0 ∧ (𝑄↑((𝑃 − 1) / 2)) ∈ ℤ ∧ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ) → ((𝐿‘(𝑄↑((𝑃 − 1) / 2))) = (𝐿‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ↔ 𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) − (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
263256, 258, 261, 262syl3anc 1368 . . 3 (𝜑 → ((𝐿‘(𝑄↑((𝑃 − 1) / 2))) = (𝐿‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ↔ 𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) − (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
264255, 263mpbid 235 . 2 (𝜑𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) − (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
265 moddvds 15610 . . 3 ((𝑃 ∈ ℕ ∧ (𝑄↑((𝑃 − 1) / 2)) ∈ ℤ ∧ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ) → (((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃) ↔ 𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) − (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
26666, 258, 261, 265syl3anc 1368 . 2 (𝜑 → (((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃) ↔ 𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) − (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
267264, 266mpbird 260 1 (𝜑 → ((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  Vcvv 3441  cdif 3878  wss 3881  {csn 4525   class class class wbr 5030  cmpt 5110  ran crn 5520  ccom 5523  wf 6320  cfv 6324  (class class class)co 7135  f cof 7387  Fincfn 8492  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  cmin 10859  -cneg 10860   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  cz 11969  cuz 12231  +crp 12377  ...cfz 12885  cfl 13155   mod cmo 13232  cexp 13425  chash 13686  Σcsu 15034  cdvds 15599  cprime 16005  Basecbs 16475  s cress 16476  .rcmulr 16558  0gc0g 16705   Σg cgsu 16706  Mndcmnd 17903   MndHom cmhm 17946  SubMndcsubmnd 17947  .gcmg 18216  SubGrpcsubg 18265   GrpHom cghm 18347  CMndccmn 18898  Abelcabl 18899  mulGrpcmgp 19232  1rcur 19244  Ringcrg 19290  CRingccrg 19291   RingHom crh 19460  DivRingcdr 19495  Fieldcfield 19496  SubRingcsubrg 19524  fldccnfld 20091  ringzring 20163  ℤRHomczrh 20193  ℤ/nczn 20196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-ec 8274  df-qs 8278  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-dvds 15600  df-gcd 15834  df-prm 16006  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-gsum 16708  df-imas 16773  df-qus 16774  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-nsg 18269  df-eqg 18270  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-rnghom 19463  df-drng 19497  df-field 19498  df-subrg 19526  df-lmod 19629  df-lss 19697  df-lsp 19737  df-sra 19937  df-rgmod 19938  df-lidl 19939  df-rsp 19940  df-2idl 19998  df-nzr 20024  df-rlreg 20049  df-domn 20050  df-idom 20051  df-cnfld 20092  df-zring 20164  df-zrh 20197  df-zn 20200
This theorem is referenced by:  lgseisen  25963
  Copyright terms: Public domain W3C validator