MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgseisenlem4 Structured version   Visualization version   GIF version

Theorem lgseisenlem4 26726
Description: Lemma for lgseisen 26727. The function 𝑀 is an injection (and hence a bijection by the pigeonhole principle). (Contributed by Mario Carneiro, 18-Jun-2015.) (Proof shortened by AV, 15-Jun-2019.)
Hypotheses
Ref Expression
lgseisen.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgseisen.2 (𝜑𝑄 ∈ (ℙ ∖ {2}))
lgseisen.3 (𝜑𝑃𝑄)
lgseisen.4 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃)
lgseisen.5 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))
lgseisen.6 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃)
lgseisen.7 𝑌 = (ℤ/nℤ‘𝑃)
lgseisen.8 𝐺 = (mulGrp‘𝑌)
lgseisen.9 𝐿 = (ℤRHom‘𝑌)
Assertion
Ref Expression
lgseisenlem4 (𝜑 → ((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐿   𝑥,𝑦,𝑃   𝜑,𝑥,𝑦   𝑦,𝑀   𝑥,𝑄,𝑦   𝑥,𝑌   𝑥,𝑆
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝑆(𝑦)   𝐺(𝑦)   𝐿(𝑦)   𝑀(𝑥)   𝑌(𝑦)

Proof of Theorem lgseisenlem4
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 zringbas 20875 . . . . 5 ℤ = (Base‘ℤring)
2 zring0 20879 . . . . 5 0 = (0g‘ℤring)
3 zringabl 20873 . . . . . 6 ring ∈ Abel
4 ablcmn 19569 . . . . . 6 (ℤring ∈ Abel → ℤring ∈ CMnd)
53, 4mp1i 13 . . . . 5 (𝜑 → ℤring ∈ CMnd)
6 lgseisen.1 . . . . . . . . . 10 (𝜑𝑃 ∈ (ℙ ∖ {2}))
76eldifad 3922 . . . . . . . . 9 (𝜑𝑃 ∈ ℙ)
8 lgseisen.7 . . . . . . . . . 10 𝑌 = (ℤ/nℤ‘𝑃)
98znfld 20967 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑌 ∈ Field)
107, 9syl 17 . . . . . . . 8 (𝜑𝑌 ∈ Field)
11 isfld 20196 . . . . . . . . 9 (𝑌 ∈ Field ↔ (𝑌 ∈ DivRing ∧ 𝑌 ∈ CRing))
1211simprbi 497 . . . . . . . 8 (𝑌 ∈ Field → 𝑌 ∈ CRing)
1310, 12syl 17 . . . . . . 7 (𝜑𝑌 ∈ CRing)
14 lgseisen.8 . . . . . . . 8 𝐺 = (mulGrp‘𝑌)
1514crngmgp 19972 . . . . . . 7 (𝑌 ∈ CRing → 𝐺 ∈ CMnd)
1613, 15syl 17 . . . . . 6 (𝜑𝐺 ∈ CMnd)
17 cmnmnd 19579 . . . . . 6 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
1816, 17syl 17 . . . . 5 (𝜑𝐺 ∈ Mnd)
19 fzfid 13878 . . . . 5 (𝜑 → (1...((𝑃 − 1) / 2)) ∈ Fin)
20 crngring 19976 . . . . . . . . . 10 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
2113, 20syl 17 . . . . . . . . 9 (𝜑𝑌 ∈ Ring)
22 lgseisen.9 . . . . . . . . . 10 𝐿 = (ℤRHom‘𝑌)
2322zrhrhm 20912 . . . . . . . . 9 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
2421, 23syl 17 . . . . . . . 8 (𝜑𝐿 ∈ (ℤring RingHom 𝑌))
25 eqid 2736 . . . . . . . . 9 (Base‘𝑌) = (Base‘𝑌)
261, 25rhmf 20158 . . . . . . . 8 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
2724, 26syl 17 . . . . . . 7 (𝜑𝐿:ℤ⟶(Base‘𝑌))
28 m1expcl 13992 . . . . . . . 8 (𝑘 ∈ ℤ → (-1↑𝑘) ∈ ℤ)
2928adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → (-1↑𝑘) ∈ ℤ)
3027, 29cofmpt 7078 . . . . . 6 (𝜑 → (𝐿 ∘ (𝑘 ∈ ℤ ↦ (-1↑𝑘))) = (𝑘 ∈ ℤ ↦ (𝐿‘(-1↑𝑘))))
31 zringmpg 20892 . . . . . . . . 9 ((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring)
3231, 14rhmmhm 20153 . . . . . . . 8 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom 𝐺))
3324, 32syl 17 . . . . . . 7 (𝜑𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom 𝐺))
34 neg1cn 12267 . . . . . . . . . . 11 -1 ∈ ℂ
35 neg1ne0 12269 . . . . . . . . . . 11 -1 ≠ 0
36 eqid 2736 . . . . . . . . . . . 12 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
37 eqid 2736 . . . . . . . . . . . 12 ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
3836, 37expghm 20896 . . . . . . . . . . 11 ((-1 ∈ ℂ ∧ -1 ≠ 0) → (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring GrpHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))))
3934, 35, 38mp2an 690 . . . . . . . . . 10 (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring GrpHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
40 ghmmhm 19018 . . . . . . . . . 10 ((𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring GrpHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))))
4139, 40ax-mp 5 . . . . . . . . 9 (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
42 cnring 20819 . . . . . . . . . 10 fld ∈ Ring
43 cnfldbas 20800 . . . . . . . . . . . 12 ℂ = (Base‘ℂfld)
44 cnfld0 20821 . . . . . . . . . . . 12 0 = (0g‘ℂfld)
45 cndrng 20826 . . . . . . . . . . . 12 fld ∈ DivRing
4643, 44, 45drngui 20191 . . . . . . . . . . 11 (ℂ ∖ {0}) = (Unit‘ℂfld)
4746, 36unitsubm 20099 . . . . . . . . . 10 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)))
4842, 47ax-mp 5 . . . . . . . . 9 (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld))
4937resmhm2 18632 . . . . . . . . 9 (((𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) ∧ (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld))) → (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom (mulGrp‘ℂfld)))
5041, 48, 49mp2an 690 . . . . . . . 8 (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom (mulGrp‘ℂfld))
51 zsubrg 20850 . . . . . . . . . 10 ℤ ∈ (SubRing‘ℂfld)
5236subrgsubm 20235 . . . . . . . . . 10 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)))
5351, 52ax-mp 5 . . . . . . . . 9 ℤ ∈ (SubMnd‘(mulGrp‘ℂfld))
5429fmpttd 7063 . . . . . . . . . 10 (𝜑 → (𝑘 ∈ ℤ ↦ (-1↑𝑘)):ℤ⟶ℤ)
5554frnd 6676 . . . . . . . . 9 (𝜑 → ran (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ⊆ ℤ)
56 eqid 2736 . . . . . . . . . 10 ((mulGrp‘ℂfld) ↾s ℤ) = ((mulGrp‘ℂfld) ↾s ℤ)
5756resmhm2b 18633 . . . . . . . . 9 ((ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ ran (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ⊆ ℤ) → ((𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom (mulGrp‘ℂfld)) ↔ (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s ℤ))))
5853, 55, 57sylancr 587 . . . . . . . 8 (𝜑 → ((𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom (mulGrp‘ℂfld)) ↔ (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s ℤ))))
5950, 58mpbii 232 . . . . . . 7 (𝜑 → (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s ℤ)))
60 mhmco 18634 . . . . . . 7 ((𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom 𝐺) ∧ (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s ℤ))) → (𝐿 ∘ (𝑘 ∈ ℤ ↦ (-1↑𝑘))) ∈ (ℤring MndHom 𝐺))
6133, 59, 60syl2anc 584 . . . . . 6 (𝜑 → (𝐿 ∘ (𝑘 ∈ ℤ ↦ (-1↑𝑘))) ∈ (ℤring MndHom 𝐺))
6230, 61eqeltrrd 2839 . . . . 5 (𝜑 → (𝑘 ∈ ℤ ↦ (𝐿‘(-1↑𝑘))) ∈ (ℤring MndHom 𝐺))
63 lgseisen.2 . . . . . . . . . . 11 (𝜑𝑄 ∈ (ℙ ∖ {2}))
6463gausslemma2dlem0a 26704 . . . . . . . . . 10 (𝜑𝑄 ∈ ℕ)
6564nnred 12168 . . . . . . . . 9 (𝜑𝑄 ∈ ℝ)
666gausslemma2dlem0a 26704 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
6765, 66nndivred 12207 . . . . . . . 8 (𝜑 → (𝑄 / 𝑃) ∈ ℝ)
6867adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 / 𝑃) ∈ ℝ)
69 2nn 12226 . . . . . . . . 9 2 ∈ ℕ
70 elfznn 13470 . . . . . . . . . 10 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℕ)
7170adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℕ)
72 nnmulcl 12177 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (2 · 𝑥) ∈ ℕ)
7369, 71, 72sylancr 587 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℕ)
7473nnred 12168 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℝ)
7568, 74remulcld 11185 . . . . . 6 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 / 𝑃) · (2 · 𝑥)) ∈ ℝ)
7675flcld 13703 . . . . 5 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ)
77 eqid 2736 . . . . . 6 (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))
78 fvexd 6857 . . . . . 6 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ V)
79 c0ex 11149 . . . . . . 7 0 ∈ V
8079a1i 11 . . . . . 6 (𝜑 → 0 ∈ V)
8177, 19, 78, 80fsuppmptdm 9316 . . . . 5 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) finSupp 0)
82 oveq2 7365 . . . . . 6 (𝑘 = (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) → (-1↑𝑘) = (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
8382fveq2d 6846 . . . . 5 (𝑘 = (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) → (𝐿‘(-1↑𝑘)) = (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
84 oveq2 7365 . . . . . 6 (𝑘 = (ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) → (-1↑𝑘) = (-1↑(ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
8584fveq2d 6846 . . . . 5 (𝑘 = (ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) → (𝐿‘(-1↑𝑘)) = (𝐿‘(-1↑(ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))))
861, 2, 5, 18, 19, 62, 76, 81, 83, 85gsummhm2 19716 . . . 4 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) = (𝐿‘(-1↑(ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))))
8714, 25mgpbas 19902 . . . . . . 7 (Base‘𝑌) = (Base‘𝐺)
88 eqid 2736 . . . . . . . 8 (.r𝑌) = (.r𝑌)
8914, 88mgpplusg 19900 . . . . . . 7 (.r𝑌) = (+g𝐺)
9027adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝐿:ℤ⟶(Base‘𝑌))
91 m1expcl 13992 . . . . . . . . 9 ((⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ → (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ)
9276, 91syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ)
9390, 92ffvelcdmd 7036 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ∈ (Base‘𝑌))
94 neg1z 12539 . . . . . . . . . 10 -1 ∈ ℤ
95 lgseisen.4 . . . . . . . . . . 11 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃)
9663eldifad 3922 . . . . . . . . . . . . . . 15 (𝜑𝑄 ∈ ℙ)
9796adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℙ)
98 prmz 16551 . . . . . . . . . . . . . 14 (𝑄 ∈ ℙ → 𝑄 ∈ ℤ)
9997, 98syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℤ)
10073nnzd 12526 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℤ)
10199, 100zmulcld 12613 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℤ)
1027adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℙ)
103 prmnn 16550 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
104102, 103syl 17 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℕ)
105101, 104zmodcld 13797 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) mod 𝑃) ∈ ℕ0)
10695, 105eqeltrid 2842 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 ∈ ℕ0)
107 zexpcl 13982 . . . . . . . . . 10 ((-1 ∈ ℤ ∧ 𝑅 ∈ ℕ0) → (-1↑𝑅) ∈ ℤ)
10894, 106, 107sylancr 587 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑅) ∈ ℤ)
109108, 99zmulcld 12613 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑅) · 𝑄) ∈ ℤ)
11090, 109ffvelcdmd 7036 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘((-1↑𝑅) · 𝑄)) ∈ (Base‘𝑌))
111 eqid 2736 . . . . . . 7 (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
112 eqid 2736 . . . . . . 7 (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))
11387, 89, 16, 19, 93, 110, 111, 112gsummptfidmadd2 19703 . . . . . 6 (𝜑 → (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘f (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))) = ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))))
114 eqidd 2737 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
115 eqidd 2737 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))
11619, 93, 110, 114, 115offval2 7637 . . . . . . . 8 (𝜑 → ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘f (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r𝑌)(𝐿‘((-1↑𝑅) · 𝑄)))))
11724adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝐿 ∈ (ℤring RingHom 𝑌))
118 zringmulr 20878 . . . . . . . . . . . 12 · = (.r‘ℤring)
1191, 118, 88rhmmul 20159 . . . . . . . . . . 11 ((𝐿 ∈ (ℤring RingHom 𝑌) ∧ (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ ∧ ((-1↑𝑅) · 𝑄) ∈ ℤ) → (𝐿‘((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄))) = ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r𝑌)(𝐿‘((-1↑𝑅) · 𝑄))))
120117, 92, 109, 119syl3anc 1371 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄))) = ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r𝑌)(𝐿‘((-1↑𝑅) · 𝑄))))
121101zred 12607 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℝ)
122104nnrpd 12955 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℝ+)
123 modval 13776 . . . . . . . . . . . . . . . . . . . 20 (((𝑄 · (2 · 𝑥)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((𝑄 · (2 · 𝑥)) mod 𝑃) = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃)))))
124121, 122, 123syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) mod 𝑃) = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃)))))
12595, 124eqtrid 2788 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃)))))
12699zcnd 12608 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℂ)
12773nncnd 12169 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℂ)
128104nncnd 12169 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℂ)
129104nnne0d 12203 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ≠ 0)
130126, 127, 128, 129div23d 11968 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) / 𝑃) = ((𝑄 / 𝑃) · (2 · 𝑥)))
131130fveq2d 6846 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃)) = (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))
132131oveq2d 7373 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃))) = (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
133132oveq2d 7373 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃)))) = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
134125, 133eqtrd 2776 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
135134oveq2d 7373 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅) = ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
136 prmz 16551 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
137102, 136syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℤ)
138137, 76zmulcld 12613 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ)
139138zcnd 12608 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℂ)
140101zcnd 12608 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℂ)
141139, 140pncan3d 11515 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) = (𝑄 · (2 · 𝑥)))
142 2cnd 12231 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈ ℂ)
14371nncnd 12169 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℂ)
144126, 142, 143mul12d 11364 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) = (2 · (𝑄 · 𝑥)))
145135, 141, 1443eqtrd 2780 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅) = (2 · (𝑄 · 𝑥)))
146145oveq2d 7373 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅)) = (-1↑(2 · (𝑄 · 𝑥))))
14734a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → -1 ∈ ℂ)
14835a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → -1 ≠ 0)
149106nn0zd 12525 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 ∈ ℤ)
150 expaddz 14012 . . . . . . . . . . . . . . . 16 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ ∧ 𝑅 ∈ ℤ)) → (-1↑((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅)) = ((-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) · (-1↑𝑅)))
151147, 148, 138, 149, 150syl22anc 837 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅)) = ((-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) · (-1↑𝑅)))
152 expmulz 14014 . . . . . . . . . . . . . . . . . 18 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝑃 ∈ ℤ ∧ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ)) → (-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = ((-1↑𝑃)↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
153147, 148, 137, 76, 152syl22anc 837 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = ((-1↑𝑃)↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
154 1cnd 11150 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 1 ∈ ℂ)
155 eldifsni 4750 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
1566, 155syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑃 ≠ 2)
157156necomd 2999 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 2 ≠ 𝑃)
158157neneqd 2948 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ¬ 2 = 𝑃)
159158adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ¬ 2 = 𝑃)
160 2z 12535 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℤ
161 uzid 12778 . . . . . . . . . . . . . . . . . . . . . . 23 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
162160, 161ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ (ℤ‘2)
163 dvdsprm 16579 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (2 ∥ 𝑃 ↔ 2 = 𝑃))
164162, 102, 163sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 ∥ 𝑃 ↔ 2 = 𝑃))
165159, 164mtbird 324 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ¬ 2 ∥ 𝑃)
166 oexpneg 16227 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℂ ∧ 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (-1↑𝑃) = -(1↑𝑃))
167154, 104, 165, 166syl3anc 1371 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑃) = -(1↑𝑃))
168 1exp 13997 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℤ → (1↑𝑃) = 1)
169137, 168syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (1↑𝑃) = 1)
170169negeqd 11395 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → -(1↑𝑃) = -1)
171167, 170eqtrd 2776 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑃) = -1)
172171oveq1d 7372 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑃)↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
173153, 172eqtrd 2776 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
174173oveq1d 7372 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) · (-1↑𝑅)) = ((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅)))
175151, 174eqtrd 2776 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅)) = ((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅)))
176 nnmulcl 12177 . . . . . . . . . . . . . . . . . 18 ((𝑄 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (𝑄 · 𝑥) ∈ ℕ)
17764, 70, 176syl2an 596 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · 𝑥) ∈ ℕ)
178177nnnn0d 12473 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · 𝑥) ∈ ℕ0)
179 2nn0 12430 . . . . . . . . . . . . . . . . 17 2 ∈ ℕ0
180179a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈ ℕ0)
181147, 178, 180expmuld 14054 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(2 · (𝑄 · 𝑥))) = ((-1↑2)↑(𝑄 · 𝑥)))
182 neg1sqe1 14100 . . . . . . . . . . . . . . . . 17 (-1↑2) = 1
183182oveq1i 7367 . . . . . . . . . . . . . . . 16 ((-1↑2)↑(𝑄 · 𝑥)) = (1↑(𝑄 · 𝑥))
184177nnzd 12526 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · 𝑥) ∈ ℤ)
185 1exp 13997 . . . . . . . . . . . . . . . . 17 ((𝑄 · 𝑥) ∈ ℤ → (1↑(𝑄 · 𝑥)) = 1)
186184, 185syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (1↑(𝑄 · 𝑥)) = 1)
187183, 186eqtrid 2788 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑2)↑(𝑄 · 𝑥)) = 1)
188181, 187eqtrd 2776 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(2 · (𝑄 · 𝑥))) = 1)
189146, 175, 1883eqtr3d 2784 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅)) = 1)
190189oveq1d 7372 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅)) · 𝑄) = (1 · 𝑄))
19192zcnd 12608 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℂ)
192108zcnd 12608 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑅) ∈ ℂ)
193191, 192, 126mulassd 11178 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅)) · 𝑄) = ((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄)))
194126mulid2d 11173 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (1 · 𝑄) = 𝑄)
195190, 193, 1943eqtr3d 2784 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄)) = 𝑄)
196195fveq2d 6846 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄))) = (𝐿𝑄))
197120, 196eqtr3d 2778 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r𝑌)(𝐿‘((-1↑𝑅) · 𝑄))) = (𝐿𝑄))
198197mpteq2dva 5205 . . . . . . . 8 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r𝑌)(𝐿‘((-1↑𝑅) · 𝑄)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄)))
199116, 198eqtrd 2776 . . . . . . 7 (𝜑 → ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘f (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄)))
200199oveq2d 7373 . . . . . 6 (𝜑 → (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘f (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄))))
201 lgseisen.3 . . . . . . . 8 (𝜑𝑃𝑄)
202 lgseisen.5 . . . . . . . 8 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))
203 lgseisen.6 . . . . . . . 8 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃)
2046, 63, 201, 95, 202, 203, 8, 14, 22lgseisenlem3 26725 . . . . . . 7 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (1r𝑌))
205204oveq2d 7373 . . . . . 6 (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))) = ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r𝑌)(1r𝑌)))
206113, 200, 2053eqtr3rd 2785 . . . . 5 (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r𝑌)(1r𝑌)) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄))))
207 eqid 2736 . . . . . . 7 (0g𝐺) = (0g𝐺)
20893fmpttd 7063 . . . . . . 7 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))):(1...((𝑃 − 1) / 2))⟶(Base‘𝑌))
209 fvexd 6857 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ∈ V)
210 fvexd 6857 . . . . . . . 8 (𝜑 → (0g𝐺) ∈ V)
211111, 19, 209, 210fsuppmptdm 9316 . . . . . . 7 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) finSupp (0g𝐺))
21287, 207, 16, 19, 208, 211gsumcl 19692 . . . . . 6 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) ∈ (Base‘𝑌))
213 eqid 2736 . . . . . . 7 (1r𝑌) = (1r𝑌)
21425, 88, 213ringridm 19993 . . . . . 6 ((𝑌 ∈ Ring ∧ (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) ∈ (Base‘𝑌)) → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r𝑌)(1r𝑌)) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))))
21521, 212, 214syl2anc 584 . . . . 5 (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r𝑌)(1r𝑌)) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))))
21696, 98syl 17 . . . . . . . 8 (𝜑𝑄 ∈ ℤ)
21727, 216ffvelcdmd 7036 . . . . . . 7 (𝜑 → (𝐿𝑄) ∈ (Base‘𝑌))
218 eqid 2736 . . . . . . . 8 (.g𝐺) = (.g𝐺)
21987, 218gsumconst 19711 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (1...((𝑃 − 1) / 2)) ∈ Fin ∧ (𝐿𝑄) ∈ (Base‘𝑌)) → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄))) = ((♯‘(1...((𝑃 − 1) / 2)))(.g𝐺)(𝐿𝑄)))
22018, 19, 217, 219syl3anc 1371 . . . . . 6 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄))) = ((♯‘(1...((𝑃 − 1) / 2)))(.g𝐺)(𝐿𝑄)))
221 oddprm 16682 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
2226, 221syl 17 . . . . . . . . 9 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
223222nnnn0d 12473 . . . . . . . 8 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
224 hashfz1 14246 . . . . . . . 8 (((𝑃 − 1) / 2) ∈ ℕ0 → (♯‘(1...((𝑃 − 1) / 2))) = ((𝑃 − 1) / 2))
225223, 224syl 17 . . . . . . 7 (𝜑 → (♯‘(1...((𝑃 − 1) / 2))) = ((𝑃 − 1) / 2))
226225oveq1d 7372 . . . . . 6 (𝜑 → ((♯‘(1...((𝑃 − 1) / 2)))(.g𝐺)(𝐿𝑄)) = (((𝑃 − 1) / 2)(.g𝐺)(𝐿𝑄)))
22731, 1mgpbas 19902 . . . . . . . . 9 ℤ = (Base‘((mulGrp‘ℂfld) ↾s ℤ))
228 eqid 2736 . . . . . . . . 9 (.g‘((mulGrp‘ℂfld) ↾s ℤ)) = (.g‘((mulGrp‘ℂfld) ↾s ℤ))
229227, 228, 218mhmmulg 18917 . . . . . . . 8 ((𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom 𝐺) ∧ ((𝑃 − 1) / 2) ∈ ℕ0𝑄 ∈ ℤ) → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑄)) = (((𝑃 − 1) / 2)(.g𝐺)(𝐿𝑄)))
23033, 223, 216, 229syl3anc 1371 . . . . . . 7 (𝜑 → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑄)) = (((𝑃 − 1) / 2)(.g𝐺)(𝐿𝑄)))
23153a1i 11 . . . . . . . . . 10 (𝜑 → ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)))
232 eqid 2736 . . . . . . . . . . 11 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
233232, 56, 228submmulg 18920 . . . . . . . . . 10 ((ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ ((𝑃 − 1) / 2) ∈ ℕ0𝑄 ∈ ℤ) → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝑄) = (((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑄))
234231, 223, 216, 233syl3anc 1371 . . . . . . . . 9 (𝜑 → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝑄) = (((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑄))
235216zcnd 12608 . . . . . . . . . 10 (𝜑𝑄 ∈ ℂ)
236 cnfldexp 20830 . . . . . . . . . 10 ((𝑄 ∈ ℂ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝑄) = (𝑄↑((𝑃 − 1) / 2)))
237235, 223, 236syl2anc 584 . . . . . . . . 9 (𝜑 → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝑄) = (𝑄↑((𝑃 − 1) / 2)))
238234, 237eqtr3d 2778 . . . . . . . 8 (𝜑 → (((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑄) = (𝑄↑((𝑃 − 1) / 2)))
239238fveq2d 6846 . . . . . . 7 (𝜑 → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑄)) = (𝐿‘(𝑄↑((𝑃 − 1) / 2))))
240230, 239eqtr3d 2778 . . . . . 6 (𝜑 → (((𝑃 − 1) / 2)(.g𝐺)(𝐿𝑄)) = (𝐿‘(𝑄↑((𝑃 − 1) / 2))))
241220, 226, 2403eqtrd 2780 . . . . 5 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄))) = (𝐿‘(𝑄↑((𝑃 − 1) / 2))))
242206, 215, 2413eqtr3d 2784 . . . 4 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) = (𝐿‘(𝑄↑((𝑃 − 1) / 2))))
243 subrgsubg 20228 . . . . . . . . . 10 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubGrp‘ℂfld))
24451, 243ax-mp 5 . . . . . . . . 9 ℤ ∈ (SubGrp‘ℂfld)
245 subgsubm 18950 . . . . . . . . 9 (ℤ ∈ (SubGrp‘ℂfld) → ℤ ∈ (SubMnd‘ℂfld))
246244, 245mp1i 13 . . . . . . . 8 (𝜑 → ℤ ∈ (SubMnd‘ℂfld))
24776fmpttd 7063 . . . . . . . 8 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))):(1...((𝑃 − 1) / 2))⟶ℤ)
248 df-zring 20870 . . . . . . . 8 ring = (ℂflds ℤ)
24919, 246, 247, 248gsumsubm 18645 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = (ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
25076zcnd 12608 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℂ)
25119, 250gsumfsum 20864 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))
252249, 251eqtr3d 2778 . . . . . 6 (𝜑 → (ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))
253252oveq2d 7373 . . . . 5 (𝜑 → (-1↑(ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
254253fveq2d 6846 . . . 4 (𝜑 → (𝐿‘(-1↑(ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) = (𝐿‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
25586, 242, 2543eqtr3d 2784 . . 3 (𝜑 → (𝐿‘(𝑄↑((𝑃 − 1) / 2))) = (𝐿‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
25666nnnn0d 12473 . . . 4 (𝜑𝑃 ∈ ℕ0)
257 zexpcl 13982 . . . . 5 ((𝑄 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝑄↑((𝑃 − 1) / 2)) ∈ ℤ)
258216, 223, 257syl2anc 584 . . . 4 (𝜑 → (𝑄↑((𝑃 − 1) / 2)) ∈ ℤ)
25919, 76fsumzcl 15620 . . . . 5 (𝜑 → Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ)
260 m1expcl 13992 . . . . 5 𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ)
261259, 260syl 17 . . . 4 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ)
2628, 22zndvds 20956 . . . 4 ((𝑃 ∈ ℕ0 ∧ (𝑄↑((𝑃 − 1) / 2)) ∈ ℤ ∧ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ) → ((𝐿‘(𝑄↑((𝑃 − 1) / 2))) = (𝐿‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ↔ 𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) − (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
263256, 258, 261, 262syl3anc 1371 . . 3 (𝜑 → ((𝐿‘(𝑄↑((𝑃 − 1) / 2))) = (𝐿‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ↔ 𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) − (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
264255, 263mpbid 231 . 2 (𝜑𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) − (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
265 moddvds 16147 . . 3 ((𝑃 ∈ ℕ ∧ (𝑄↑((𝑃 − 1) / 2)) ∈ ℤ ∧ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ) → (((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃) ↔ 𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) − (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
26666, 258, 261, 265syl3anc 1371 . 2 (𝜑 → (((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃) ↔ 𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) − (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
267264, 266mpbird 256 1 (𝜑 → ((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  Vcvv 3445  cdif 3907  wss 3910  {csn 4586   class class class wbr 5105  cmpt 5188  ran crn 5634  ccom 5637  wf 6492  cfv 6496  (class class class)co 7357  f cof 7615  Fincfn 8883  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  cmin 11385  -cneg 11386   / cdiv 11812  cn 12153  2c2 12208  0cn0 12413  cz 12499  cuz 12763  +crp 12915  ...cfz 13424  cfl 13695   mod cmo 13774  cexp 13967  chash 14230  Σcsu 15570  cdvds 16136  cprime 16547  Basecbs 17083  s cress 17112  .rcmulr 17134  0gc0g 17321   Σg cgsu 17322  Mndcmnd 18556   MndHom cmhm 18599  SubMndcsubmnd 18600  .gcmg 18872  SubGrpcsubg 18922   GrpHom cghm 19005  CMndccmn 19562  Abelcabl 19563  mulGrpcmgp 19896  1rcur 19913  Ringcrg 19964  CRingccrg 19965   RingHom crh 20143  DivRingcdr 20185  Fieldcfield 20186  SubRingcsubrg 20218  fldccnfld 20796  ringczring 20869  ℤRHomczrh 20900  ℤ/nczn 20903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-ec 8650  df-qs 8654  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-dvds 16137  df-gcd 16375  df-prm 16548  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-0g 17323  df-gsum 17324  df-imas 17390  df-qus 17391  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-nsg 18926  df-eqg 18927  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-rnghom 20146  df-drng 20187  df-field 20188  df-subrg 20220  df-lmod 20324  df-lss 20393  df-lsp 20433  df-sra 20633  df-rgmod 20634  df-lidl 20635  df-rsp 20636  df-2idl 20702  df-nzr 20728  df-rlreg 20753  df-domn 20754  df-idom 20755  df-cnfld 20797  df-zring 20870  df-zrh 20904  df-zn 20907
This theorem is referenced by:  lgseisen  26727
  Copyright terms: Public domain W3C validator