MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgseisenlem4 Structured version   Visualization version   GIF version

Theorem lgseisenlem4 26870
Description: Lemma for lgseisen 26871. The function 𝑀 is an injection (and hence a bijection by the pigeonhole principle). (Contributed by Mario Carneiro, 18-Jun-2015.) (Proof shortened by AV, 15-Jun-2019.)
Hypotheses
Ref Expression
lgseisen.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgseisen.2 (𝜑𝑄 ∈ (ℙ ∖ {2}))
lgseisen.3 (𝜑𝑃𝑄)
lgseisen.4 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃)
lgseisen.5 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))
lgseisen.6 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃)
lgseisen.7 𝑌 = (ℤ/nℤ‘𝑃)
lgseisen.8 𝐺 = (mulGrp‘𝑌)
lgseisen.9 𝐿 = (ℤRHom‘𝑌)
Assertion
Ref Expression
lgseisenlem4 (𝜑 → ((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐿   𝑥,𝑦,𝑃   𝜑,𝑥,𝑦   𝑦,𝑀   𝑥,𝑄,𝑦   𝑥,𝑌   𝑥,𝑆
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝑆(𝑦)   𝐺(𝑦)   𝐿(𝑦)   𝑀(𝑥)   𝑌(𝑦)

Proof of Theorem lgseisenlem4
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 zringbas 21015 . . . . 5 ℤ = (Base‘ℤring)
2 zring0 21019 . . . . 5 0 = (0g‘ℤring)
3 zringabl 21013 . . . . . 6 ring ∈ Abel
4 ablcmn 19649 . . . . . 6 (ℤring ∈ Abel → ℤring ∈ CMnd)
53, 4mp1i 13 . . . . 5 (𝜑 → ℤring ∈ CMnd)
6 lgseisen.1 . . . . . . . . . 10 (𝜑𝑃 ∈ (ℙ ∖ {2}))
76eldifad 3959 . . . . . . . . 9 (𝜑𝑃 ∈ ℙ)
8 lgseisen.7 . . . . . . . . . 10 𝑌 = (ℤ/nℤ‘𝑃)
98znfld 21107 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑌 ∈ Field)
107, 9syl 17 . . . . . . . 8 (𝜑𝑌 ∈ Field)
11 isfld 20318 . . . . . . . . 9 (𝑌 ∈ Field ↔ (𝑌 ∈ DivRing ∧ 𝑌 ∈ CRing))
1211simprbi 497 . . . . . . . 8 (𝑌 ∈ Field → 𝑌 ∈ CRing)
1310, 12syl 17 . . . . . . 7 (𝜑𝑌 ∈ CRing)
14 lgseisen.8 . . . . . . . 8 𝐺 = (mulGrp‘𝑌)
1514crngmgp 20057 . . . . . . 7 (𝑌 ∈ CRing → 𝐺 ∈ CMnd)
1613, 15syl 17 . . . . . 6 (𝜑𝐺 ∈ CMnd)
17 cmnmnd 19659 . . . . . 6 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
1816, 17syl 17 . . . . 5 (𝜑𝐺 ∈ Mnd)
19 fzfid 13934 . . . . 5 (𝜑 → (1...((𝑃 − 1) / 2)) ∈ Fin)
20 crngring 20061 . . . . . . . . . 10 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
2113, 20syl 17 . . . . . . . . 9 (𝜑𝑌 ∈ Ring)
22 lgseisen.9 . . . . . . . . . 10 𝐿 = (ℤRHom‘𝑌)
2322zrhrhm 21052 . . . . . . . . 9 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
2421, 23syl 17 . . . . . . . 8 (𝜑𝐿 ∈ (ℤring RingHom 𝑌))
25 eqid 2732 . . . . . . . . 9 (Base‘𝑌) = (Base‘𝑌)
261, 25rhmf 20255 . . . . . . . 8 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
2724, 26syl 17 . . . . . . 7 (𝜑𝐿:ℤ⟶(Base‘𝑌))
28 m1expcl 14048 . . . . . . . 8 (𝑘 ∈ ℤ → (-1↑𝑘) ∈ ℤ)
2928adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → (-1↑𝑘) ∈ ℤ)
3027, 29cofmpt 7126 . . . . . 6 (𝜑 → (𝐿 ∘ (𝑘 ∈ ℤ ↦ (-1↑𝑘))) = (𝑘 ∈ ℤ ↦ (𝐿‘(-1↑𝑘))))
31 zringmpg 21032 . . . . . . . . 9 ((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring)
3231, 14rhmmhm 20250 . . . . . . . 8 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom 𝐺))
3324, 32syl 17 . . . . . . 7 (𝜑𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom 𝐺))
34 neg1cn 12322 . . . . . . . . . . 11 -1 ∈ ℂ
35 neg1ne0 12324 . . . . . . . . . . 11 -1 ≠ 0
36 eqid 2732 . . . . . . . . . . . 12 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
37 eqid 2732 . . . . . . . . . . . 12 ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
3836, 37expghm 21036 . . . . . . . . . . 11 ((-1 ∈ ℂ ∧ -1 ≠ 0) → (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring GrpHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))))
3934, 35, 38mp2an 690 . . . . . . . . . 10 (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring GrpHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
40 ghmmhm 19096 . . . . . . . . . 10 ((𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring GrpHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))))
4139, 40ax-mp 5 . . . . . . . . 9 (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
42 cnring 20959 . . . . . . . . . 10 fld ∈ Ring
43 cnfldbas 20940 . . . . . . . . . . . 12 ℂ = (Base‘ℂfld)
44 cnfld0 20961 . . . . . . . . . . . 12 0 = (0g‘ℂfld)
45 cndrng 20966 . . . . . . . . . . . 12 fld ∈ DivRing
4643, 44, 45drngui 20313 . . . . . . . . . . 11 (ℂ ∖ {0}) = (Unit‘ℂfld)
4746, 36unitsubm 20192 . . . . . . . . . 10 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)))
4842, 47ax-mp 5 . . . . . . . . 9 (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld))
4937resmhm2 18698 . . . . . . . . 9 (((𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) ∧ (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld))) → (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom (mulGrp‘ℂfld)))
5041, 48, 49mp2an 690 . . . . . . . 8 (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom (mulGrp‘ℂfld))
51 zsubrg 20990 . . . . . . . . . 10 ℤ ∈ (SubRing‘ℂfld)
5236subrgsubm 20368 . . . . . . . . . 10 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)))
5351, 52ax-mp 5 . . . . . . . . 9 ℤ ∈ (SubMnd‘(mulGrp‘ℂfld))
5429fmpttd 7111 . . . . . . . . . 10 (𝜑 → (𝑘 ∈ ℤ ↦ (-1↑𝑘)):ℤ⟶ℤ)
5554frnd 6722 . . . . . . . . 9 (𝜑 → ran (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ⊆ ℤ)
56 eqid 2732 . . . . . . . . . 10 ((mulGrp‘ℂfld) ↾s ℤ) = ((mulGrp‘ℂfld) ↾s ℤ)
5756resmhm2b 18699 . . . . . . . . 9 ((ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ ran (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ⊆ ℤ) → ((𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom (mulGrp‘ℂfld)) ↔ (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s ℤ))))
5853, 55, 57sylancr 587 . . . . . . . 8 (𝜑 → ((𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom (mulGrp‘ℂfld)) ↔ (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s ℤ))))
5950, 58mpbii 232 . . . . . . 7 (𝜑 → (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s ℤ)))
60 mhmco 18700 . . . . . . 7 ((𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom 𝐺) ∧ (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s ℤ))) → (𝐿 ∘ (𝑘 ∈ ℤ ↦ (-1↑𝑘))) ∈ (ℤring MndHom 𝐺))
6133, 59, 60syl2anc 584 . . . . . 6 (𝜑 → (𝐿 ∘ (𝑘 ∈ ℤ ↦ (-1↑𝑘))) ∈ (ℤring MndHom 𝐺))
6230, 61eqeltrrd 2834 . . . . 5 (𝜑 → (𝑘 ∈ ℤ ↦ (𝐿‘(-1↑𝑘))) ∈ (ℤring MndHom 𝐺))
63 lgseisen.2 . . . . . . . . . . 11 (𝜑𝑄 ∈ (ℙ ∖ {2}))
6463gausslemma2dlem0a 26848 . . . . . . . . . 10 (𝜑𝑄 ∈ ℕ)
6564nnred 12223 . . . . . . . . 9 (𝜑𝑄 ∈ ℝ)
666gausslemma2dlem0a 26848 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
6765, 66nndivred 12262 . . . . . . . 8 (𝜑 → (𝑄 / 𝑃) ∈ ℝ)
6867adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 / 𝑃) ∈ ℝ)
69 2nn 12281 . . . . . . . . 9 2 ∈ ℕ
70 elfznn 13526 . . . . . . . . . 10 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℕ)
7170adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℕ)
72 nnmulcl 12232 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (2 · 𝑥) ∈ ℕ)
7369, 71, 72sylancr 587 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℕ)
7473nnred 12223 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℝ)
7568, 74remulcld 11240 . . . . . 6 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 / 𝑃) · (2 · 𝑥)) ∈ ℝ)
7675flcld 13759 . . . . 5 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ)
77 eqid 2732 . . . . . 6 (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))
78 fvexd 6903 . . . . . 6 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ V)
79 c0ex 11204 . . . . . . 7 0 ∈ V
8079a1i 11 . . . . . 6 (𝜑 → 0 ∈ V)
8177, 19, 78, 80fsuppmptdm 9370 . . . . 5 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) finSupp 0)
82 oveq2 7413 . . . . . 6 (𝑘 = (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) → (-1↑𝑘) = (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
8382fveq2d 6892 . . . . 5 (𝑘 = (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) → (𝐿‘(-1↑𝑘)) = (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
84 oveq2 7413 . . . . . 6 (𝑘 = (ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) → (-1↑𝑘) = (-1↑(ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
8584fveq2d 6892 . . . . 5 (𝑘 = (ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) → (𝐿‘(-1↑𝑘)) = (𝐿‘(-1↑(ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))))
861, 2, 5, 18, 19, 62, 76, 81, 83, 85gsummhm2 19801 . . . 4 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) = (𝐿‘(-1↑(ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))))
8714, 25mgpbas 19987 . . . . . . 7 (Base‘𝑌) = (Base‘𝐺)
88 eqid 2732 . . . . . . . 8 (.r𝑌) = (.r𝑌)
8914, 88mgpplusg 19985 . . . . . . 7 (.r𝑌) = (+g𝐺)
9027adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝐿:ℤ⟶(Base‘𝑌))
91 m1expcl 14048 . . . . . . . . 9 ((⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ → (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ)
9276, 91syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ)
9390, 92ffvelcdmd 7084 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ∈ (Base‘𝑌))
94 neg1z 12594 . . . . . . . . . 10 -1 ∈ ℤ
95 lgseisen.4 . . . . . . . . . . 11 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃)
9663eldifad 3959 . . . . . . . . . . . . . . 15 (𝜑𝑄 ∈ ℙ)
9796adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℙ)
98 prmz 16608 . . . . . . . . . . . . . 14 (𝑄 ∈ ℙ → 𝑄 ∈ ℤ)
9997, 98syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℤ)
10073nnzd 12581 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℤ)
10199, 100zmulcld 12668 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℤ)
1027adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℙ)
103 prmnn 16607 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
104102, 103syl 17 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℕ)
105101, 104zmodcld 13853 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) mod 𝑃) ∈ ℕ0)
10695, 105eqeltrid 2837 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 ∈ ℕ0)
107 zexpcl 14038 . . . . . . . . . 10 ((-1 ∈ ℤ ∧ 𝑅 ∈ ℕ0) → (-1↑𝑅) ∈ ℤ)
10894, 106, 107sylancr 587 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑅) ∈ ℤ)
109108, 99zmulcld 12668 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑅) · 𝑄) ∈ ℤ)
11090, 109ffvelcdmd 7084 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘((-1↑𝑅) · 𝑄)) ∈ (Base‘𝑌))
111 eqid 2732 . . . . . . 7 (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
112 eqid 2732 . . . . . . 7 (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))
11387, 89, 16, 19, 93, 110, 111, 112gsummptfidmadd2 19788 . . . . . 6 (𝜑 → (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘f (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))) = ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))))
114 eqidd 2733 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
115 eqidd 2733 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))
11619, 93, 110, 114, 115offval2 7686 . . . . . . . 8 (𝜑 → ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘f (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r𝑌)(𝐿‘((-1↑𝑅) · 𝑄)))))
11724adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝐿 ∈ (ℤring RingHom 𝑌))
118 zringmulr 21018 . . . . . . . . . . . 12 · = (.r‘ℤring)
1191, 118, 88rhmmul 20256 . . . . . . . . . . 11 ((𝐿 ∈ (ℤring RingHom 𝑌) ∧ (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ ∧ ((-1↑𝑅) · 𝑄) ∈ ℤ) → (𝐿‘((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄))) = ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r𝑌)(𝐿‘((-1↑𝑅) · 𝑄))))
120117, 92, 109, 119syl3anc 1371 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄))) = ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r𝑌)(𝐿‘((-1↑𝑅) · 𝑄))))
121101zred 12662 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℝ)
122104nnrpd 13010 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℝ+)
123 modval 13832 . . . . . . . . . . . . . . . . . . . 20 (((𝑄 · (2 · 𝑥)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((𝑄 · (2 · 𝑥)) mod 𝑃) = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃)))))
124121, 122, 123syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) mod 𝑃) = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃)))))
12595, 124eqtrid 2784 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃)))))
12699zcnd 12663 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℂ)
12773nncnd 12224 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℂ)
128104nncnd 12224 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℂ)
129104nnne0d 12258 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ≠ 0)
130126, 127, 128, 129div23d 12023 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) / 𝑃) = ((𝑄 / 𝑃) · (2 · 𝑥)))
131130fveq2d 6892 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃)) = (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))
132131oveq2d 7421 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃))) = (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
133132oveq2d 7421 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃)))) = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
134125, 133eqtrd 2772 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
135134oveq2d 7421 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅) = ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
136 prmz 16608 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
137102, 136syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℤ)
138137, 76zmulcld 12668 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ)
139138zcnd 12663 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℂ)
140101zcnd 12663 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℂ)
141139, 140pncan3d 11570 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) = (𝑄 · (2 · 𝑥)))
142 2cnd 12286 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈ ℂ)
14371nncnd 12224 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℂ)
144126, 142, 143mul12d 11419 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) = (2 · (𝑄 · 𝑥)))
145135, 141, 1443eqtrd 2776 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅) = (2 · (𝑄 · 𝑥)))
146145oveq2d 7421 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅)) = (-1↑(2 · (𝑄 · 𝑥))))
14734a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → -1 ∈ ℂ)
14835a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → -1 ≠ 0)
149106nn0zd 12580 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 ∈ ℤ)
150 expaddz 14068 . . . . . . . . . . . . . . . 16 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ ∧ 𝑅 ∈ ℤ)) → (-1↑((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅)) = ((-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) · (-1↑𝑅)))
151147, 148, 138, 149, 150syl22anc 837 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅)) = ((-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) · (-1↑𝑅)))
152 expmulz 14070 . . . . . . . . . . . . . . . . . 18 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝑃 ∈ ℤ ∧ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ)) → (-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = ((-1↑𝑃)↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
153147, 148, 137, 76, 152syl22anc 837 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = ((-1↑𝑃)↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
154 1cnd 11205 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 1 ∈ ℂ)
155 eldifsni 4792 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
1566, 155syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑃 ≠ 2)
157156necomd 2996 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 2 ≠ 𝑃)
158157neneqd 2945 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ¬ 2 = 𝑃)
159158adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ¬ 2 = 𝑃)
160 2z 12590 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℤ
161 uzid 12833 . . . . . . . . . . . . . . . . . . . . . . 23 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
162160, 161ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ (ℤ‘2)
163 dvdsprm 16636 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (2 ∥ 𝑃 ↔ 2 = 𝑃))
164162, 102, 163sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 ∥ 𝑃 ↔ 2 = 𝑃))
165159, 164mtbird 324 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ¬ 2 ∥ 𝑃)
166 oexpneg 16284 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℂ ∧ 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (-1↑𝑃) = -(1↑𝑃))
167154, 104, 165, 166syl3anc 1371 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑃) = -(1↑𝑃))
168 1exp 14053 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℤ → (1↑𝑃) = 1)
169137, 168syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (1↑𝑃) = 1)
170169negeqd 11450 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → -(1↑𝑃) = -1)
171167, 170eqtrd 2772 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑃) = -1)
172171oveq1d 7420 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑃)↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
173153, 172eqtrd 2772 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
174173oveq1d 7420 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) · (-1↑𝑅)) = ((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅)))
175151, 174eqtrd 2772 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅)) = ((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅)))
176 nnmulcl 12232 . . . . . . . . . . . . . . . . . 18 ((𝑄 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (𝑄 · 𝑥) ∈ ℕ)
17764, 70, 176syl2an 596 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · 𝑥) ∈ ℕ)
178177nnnn0d 12528 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · 𝑥) ∈ ℕ0)
179 2nn0 12485 . . . . . . . . . . . . . . . . 17 2 ∈ ℕ0
180179a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈ ℕ0)
181147, 178, 180expmuld 14110 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(2 · (𝑄 · 𝑥))) = ((-1↑2)↑(𝑄 · 𝑥)))
182 neg1sqe1 14156 . . . . . . . . . . . . . . . . 17 (-1↑2) = 1
183182oveq1i 7415 . . . . . . . . . . . . . . . 16 ((-1↑2)↑(𝑄 · 𝑥)) = (1↑(𝑄 · 𝑥))
184177nnzd 12581 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · 𝑥) ∈ ℤ)
185 1exp 14053 . . . . . . . . . . . . . . . . 17 ((𝑄 · 𝑥) ∈ ℤ → (1↑(𝑄 · 𝑥)) = 1)
186184, 185syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (1↑(𝑄 · 𝑥)) = 1)
187183, 186eqtrid 2784 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑2)↑(𝑄 · 𝑥)) = 1)
188181, 187eqtrd 2772 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(2 · (𝑄 · 𝑥))) = 1)
189146, 175, 1883eqtr3d 2780 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅)) = 1)
190189oveq1d 7420 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅)) · 𝑄) = (1 · 𝑄))
19192zcnd 12663 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℂ)
192108zcnd 12663 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑅) ∈ ℂ)
193191, 192, 126mulassd 11233 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅)) · 𝑄) = ((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄)))
194126mullidd 11228 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (1 · 𝑄) = 𝑄)
195190, 193, 1943eqtr3d 2780 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄)) = 𝑄)
196195fveq2d 6892 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄))) = (𝐿𝑄))
197120, 196eqtr3d 2774 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r𝑌)(𝐿‘((-1↑𝑅) · 𝑄))) = (𝐿𝑄))
198197mpteq2dva 5247 . . . . . . . 8 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r𝑌)(𝐿‘((-1↑𝑅) · 𝑄)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄)))
199116, 198eqtrd 2772 . . . . . . 7 (𝜑 → ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘f (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄)))
200199oveq2d 7421 . . . . . 6 (𝜑 → (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘f (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄))))
201 lgseisen.3 . . . . . . . 8 (𝜑𝑃𝑄)
202 lgseisen.5 . . . . . . . 8 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))
203 lgseisen.6 . . . . . . . 8 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃)
2046, 63, 201, 95, 202, 203, 8, 14, 22lgseisenlem3 26869 . . . . . . 7 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (1r𝑌))
205204oveq2d 7421 . . . . . 6 (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))) = ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r𝑌)(1r𝑌)))
206113, 200, 2053eqtr3rd 2781 . . . . 5 (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r𝑌)(1r𝑌)) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄))))
207 eqid 2732 . . . . . . 7 (0g𝐺) = (0g𝐺)
20893fmpttd 7111 . . . . . . 7 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))):(1...((𝑃 − 1) / 2))⟶(Base‘𝑌))
209 fvexd 6903 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ∈ V)
210 fvexd 6903 . . . . . . . 8 (𝜑 → (0g𝐺) ∈ V)
211111, 19, 209, 210fsuppmptdm 9370 . . . . . . 7 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) finSupp (0g𝐺))
21287, 207, 16, 19, 208, 211gsumcl 19777 . . . . . 6 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) ∈ (Base‘𝑌))
213 eqid 2732 . . . . . . 7 (1r𝑌) = (1r𝑌)
21425, 88, 213ringridm 20080 . . . . . 6 ((𝑌 ∈ Ring ∧ (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) ∈ (Base‘𝑌)) → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r𝑌)(1r𝑌)) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))))
21521, 212, 214syl2anc 584 . . . . 5 (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r𝑌)(1r𝑌)) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))))
21696, 98syl 17 . . . . . . . 8 (𝜑𝑄 ∈ ℤ)
21727, 216ffvelcdmd 7084 . . . . . . 7 (𝜑 → (𝐿𝑄) ∈ (Base‘𝑌))
218 eqid 2732 . . . . . . . 8 (.g𝐺) = (.g𝐺)
21987, 218gsumconst 19796 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (1...((𝑃 − 1) / 2)) ∈ Fin ∧ (𝐿𝑄) ∈ (Base‘𝑌)) → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄))) = ((♯‘(1...((𝑃 − 1) / 2)))(.g𝐺)(𝐿𝑄)))
22018, 19, 217, 219syl3anc 1371 . . . . . 6 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄))) = ((♯‘(1...((𝑃 − 1) / 2)))(.g𝐺)(𝐿𝑄)))
221 oddprm 16739 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
2226, 221syl 17 . . . . . . . . 9 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
223222nnnn0d 12528 . . . . . . . 8 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
224 hashfz1 14302 . . . . . . . 8 (((𝑃 − 1) / 2) ∈ ℕ0 → (♯‘(1...((𝑃 − 1) / 2))) = ((𝑃 − 1) / 2))
225223, 224syl 17 . . . . . . 7 (𝜑 → (♯‘(1...((𝑃 − 1) / 2))) = ((𝑃 − 1) / 2))
226225oveq1d 7420 . . . . . 6 (𝜑 → ((♯‘(1...((𝑃 − 1) / 2)))(.g𝐺)(𝐿𝑄)) = (((𝑃 − 1) / 2)(.g𝐺)(𝐿𝑄)))
22731, 1mgpbas 19987 . . . . . . . . 9 ℤ = (Base‘((mulGrp‘ℂfld) ↾s ℤ))
228 eqid 2732 . . . . . . . . 9 (.g‘((mulGrp‘ℂfld) ↾s ℤ)) = (.g‘((mulGrp‘ℂfld) ↾s ℤ))
229227, 228, 218mhmmulg 18989 . . . . . . . 8 ((𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom 𝐺) ∧ ((𝑃 − 1) / 2) ∈ ℕ0𝑄 ∈ ℤ) → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑄)) = (((𝑃 − 1) / 2)(.g𝐺)(𝐿𝑄)))
23033, 223, 216, 229syl3anc 1371 . . . . . . 7 (𝜑 → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑄)) = (((𝑃 − 1) / 2)(.g𝐺)(𝐿𝑄)))
23153a1i 11 . . . . . . . . . 10 (𝜑 → ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)))
232 eqid 2732 . . . . . . . . . . 11 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
233232, 56, 228submmulg 18992 . . . . . . . . . 10 ((ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ ((𝑃 − 1) / 2) ∈ ℕ0𝑄 ∈ ℤ) → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝑄) = (((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑄))
234231, 223, 216, 233syl3anc 1371 . . . . . . . . 9 (𝜑 → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝑄) = (((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑄))
235216zcnd 12663 . . . . . . . . . 10 (𝜑𝑄 ∈ ℂ)
236 cnfldexp 20970 . . . . . . . . . 10 ((𝑄 ∈ ℂ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝑄) = (𝑄↑((𝑃 − 1) / 2)))
237235, 223, 236syl2anc 584 . . . . . . . . 9 (𝜑 → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝑄) = (𝑄↑((𝑃 − 1) / 2)))
238234, 237eqtr3d 2774 . . . . . . . 8 (𝜑 → (((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑄) = (𝑄↑((𝑃 − 1) / 2)))
239238fveq2d 6892 . . . . . . 7 (𝜑 → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑄)) = (𝐿‘(𝑄↑((𝑃 − 1) / 2))))
240230, 239eqtr3d 2774 . . . . . 6 (𝜑 → (((𝑃 − 1) / 2)(.g𝐺)(𝐿𝑄)) = (𝐿‘(𝑄↑((𝑃 − 1) / 2))))
241220, 226, 2403eqtrd 2776 . . . . 5 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄))) = (𝐿‘(𝑄↑((𝑃 − 1) / 2))))
242206, 215, 2413eqtr3d 2780 . . . 4 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) = (𝐿‘(𝑄↑((𝑃 − 1) / 2))))
243 subrgsubg 20361 . . . . . . . . . 10 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubGrp‘ℂfld))
24451, 243ax-mp 5 . . . . . . . . 9 ℤ ∈ (SubGrp‘ℂfld)
245 subgsubm 19022 . . . . . . . . 9 (ℤ ∈ (SubGrp‘ℂfld) → ℤ ∈ (SubMnd‘ℂfld))
246244, 245mp1i 13 . . . . . . . 8 (𝜑 → ℤ ∈ (SubMnd‘ℂfld))
24776fmpttd 7111 . . . . . . . 8 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))):(1...((𝑃 − 1) / 2))⟶ℤ)
248 df-zring 21010 . . . . . . . 8 ring = (ℂflds ℤ)
24919, 246, 247, 248gsumsubm 18712 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = (ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
25076zcnd 12663 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℂ)
25119, 250gsumfsum 21004 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))
252249, 251eqtr3d 2774 . . . . . 6 (𝜑 → (ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))
253252oveq2d 7421 . . . . 5 (𝜑 → (-1↑(ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
254253fveq2d 6892 . . . 4 (𝜑 → (𝐿‘(-1↑(ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) = (𝐿‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
25586, 242, 2543eqtr3d 2780 . . 3 (𝜑 → (𝐿‘(𝑄↑((𝑃 − 1) / 2))) = (𝐿‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
25666nnnn0d 12528 . . . 4 (𝜑𝑃 ∈ ℕ0)
257 zexpcl 14038 . . . . 5 ((𝑄 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝑄↑((𝑃 − 1) / 2)) ∈ ℤ)
258216, 223, 257syl2anc 584 . . . 4 (𝜑 → (𝑄↑((𝑃 − 1) / 2)) ∈ ℤ)
25919, 76fsumzcl 15677 . . . . 5 (𝜑 → Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ)
260 m1expcl 14048 . . . . 5 𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ)
261259, 260syl 17 . . . 4 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ)
2628, 22zndvds 21096 . . . 4 ((𝑃 ∈ ℕ0 ∧ (𝑄↑((𝑃 − 1) / 2)) ∈ ℤ ∧ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ) → ((𝐿‘(𝑄↑((𝑃 − 1) / 2))) = (𝐿‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ↔ 𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) − (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
263256, 258, 261, 262syl3anc 1371 . . 3 (𝜑 → ((𝐿‘(𝑄↑((𝑃 − 1) / 2))) = (𝐿‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ↔ 𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) − (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
264255, 263mpbid 231 . 2 (𝜑𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) − (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
265 moddvds 16204 . . 3 ((𝑃 ∈ ℕ ∧ (𝑄↑((𝑃 − 1) / 2)) ∈ ℤ ∧ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ) → (((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃) ↔ 𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) − (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
26666, 258, 261, 265syl3anc 1371 . 2 (𝜑 → (((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃) ↔ 𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) − (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
267264, 266mpbird 256 1 (𝜑 → ((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2940  Vcvv 3474  cdif 3944  wss 3947  {csn 4627   class class class wbr 5147  cmpt 5230  ran crn 5676  ccom 5679  wf 6536  cfv 6540  (class class class)co 7405  f cof 7664  Fincfn 8935  cc 11104  cr 11105  0cc0 11106  1c1 11107   + caddc 11109   · cmul 11111  cmin 11440  -cneg 11441   / cdiv 11867  cn 12208  2c2 12263  0cn0 12468  cz 12554  cuz 12818  +crp 12970  ...cfz 13480  cfl 13751   mod cmo 13830  cexp 14023  chash 14286  Σcsu 15628  cdvds 16193  cprime 16604  Basecbs 17140  s cress 17169  .rcmulr 17194  0gc0g 17381   Σg cgsu 17382  Mndcmnd 18621   MndHom cmhm 18665  SubMndcsubmnd 18666  .gcmg 18944  SubGrpcsubg 18994   GrpHom cghm 19083  CMndccmn 19642  Abelcabl 19643  mulGrpcmgp 19981  1rcur 19998  Ringcrg 20049  CRingccrg 20050   RingHom crh 20240  DivRingcdr 20307  Fieldcfield 20308  SubRingcsubrg 20351  fldccnfld 20936  ringczring 21009  ℤRHomczrh 21040  ℤ/nczn 21043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8699  df-ec 8701  df-qs 8705  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-xnn0 12541  df-z 12555  df-dec 12674  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629  df-dvds 16194  df-gcd 16432  df-prm 16605  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-0g 17383  df-gsum 17384  df-imas 17450  df-qus 17451  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mulg 18945  df-subg 18997  df-nsg 18998  df-eqg 18999  df-ghm 19084  df-cntz 19175  df-cmn 19644  df-abl 19645  df-mgp 19982  df-ur 19999  df-ring 20051  df-cring 20052  df-oppr 20142  df-dvdsr 20163  df-unit 20164  df-invr 20194  df-dvr 20207  df-rnghom 20243  df-nzr 20284  df-drng 20309  df-field 20310  df-subrg 20353  df-lmod 20465  df-lss 20535  df-lsp 20575  df-sra 20777  df-rgmod 20778  df-lidl 20779  df-rsp 20780  df-2idl 20849  df-rlreg 20891  df-domn 20892  df-idom 20893  df-cnfld 20937  df-zring 21010  df-zrh 21044  df-zn 21047
This theorem is referenced by:  lgseisen  26871
  Copyright terms: Public domain W3C validator