MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgseisenlem4 Structured version   Visualization version   GIF version

Theorem lgseisenlem4 27437
Description: Lemma for lgseisen 27438. (Contributed by Mario Carneiro, 18-Jun-2015.) (Proof shortened by AV, 15-Jun-2019.)
Hypotheses
Ref Expression
lgseisen.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgseisen.2 (𝜑𝑄 ∈ (ℙ ∖ {2}))
lgseisen.3 (𝜑𝑃𝑄)
lgseisen.4 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃)
lgseisen.5 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))
lgseisen.6 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃)
lgseisen.7 𝑌 = (ℤ/nℤ‘𝑃)
lgseisen.8 𝐺 = (mulGrp‘𝑌)
lgseisen.9 𝐿 = (ℤRHom‘𝑌)
Assertion
Ref Expression
lgseisenlem4 (𝜑 → ((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐿   𝑥,𝑦,𝑃   𝜑,𝑥,𝑦   𝑦,𝑀   𝑥,𝑄,𝑦   𝑥,𝑌   𝑥,𝑆
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝑆(𝑦)   𝐺(𝑦)   𝐿(𝑦)   𝑀(𝑥)   𝑌(𝑦)

Proof of Theorem lgseisenlem4
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 zringbas 21482 . . . . 5 ℤ = (Base‘ℤring)
2 zring0 21487 . . . . 5 0 = (0g‘ℤring)
3 zringabl 21480 . . . . . 6 ring ∈ Abel
4 ablcmn 19820 . . . . . 6 (ℤring ∈ Abel → ℤring ∈ CMnd)
53, 4mp1i 13 . . . . 5 (𝜑 → ℤring ∈ CMnd)
6 lgseisen.1 . . . . . . . . . 10 (𝜑𝑃 ∈ (ℙ ∖ {2}))
76eldifad 3975 . . . . . . . . 9 (𝜑𝑃 ∈ ℙ)
8 lgseisen.7 . . . . . . . . . 10 𝑌 = (ℤ/nℤ‘𝑃)
98znfld 21597 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑌 ∈ Field)
107, 9syl 17 . . . . . . . 8 (𝜑𝑌 ∈ Field)
11 isfld 20757 . . . . . . . . 9 (𝑌 ∈ Field ↔ (𝑌 ∈ DivRing ∧ 𝑌 ∈ CRing))
1211simprbi 496 . . . . . . . 8 (𝑌 ∈ Field → 𝑌 ∈ CRing)
1310, 12syl 17 . . . . . . 7 (𝜑𝑌 ∈ CRing)
14 lgseisen.8 . . . . . . . 8 𝐺 = (mulGrp‘𝑌)
1514crngmgp 20259 . . . . . . 7 (𝑌 ∈ CRing → 𝐺 ∈ CMnd)
1613, 15syl 17 . . . . . 6 (𝜑𝐺 ∈ CMnd)
17 cmnmnd 19830 . . . . . 6 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
1816, 17syl 17 . . . . 5 (𝜑𝐺 ∈ Mnd)
19 fzfid 14011 . . . . 5 (𝜑 → (1...((𝑃 − 1) / 2)) ∈ Fin)
20 crngring 20263 . . . . . . . . . 10 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
2113, 20syl 17 . . . . . . . . 9 (𝜑𝑌 ∈ Ring)
22 lgseisen.9 . . . . . . . . . 10 𝐿 = (ℤRHom‘𝑌)
2322zrhrhm 21540 . . . . . . . . 9 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
2421, 23syl 17 . . . . . . . 8 (𝜑𝐿 ∈ (ℤring RingHom 𝑌))
25 eqid 2735 . . . . . . . . 9 (Base‘𝑌) = (Base‘𝑌)
261, 25rhmf 20502 . . . . . . . 8 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
2724, 26syl 17 . . . . . . 7 (𝜑𝐿:ℤ⟶(Base‘𝑌))
28 m1expcl 14124 . . . . . . . 8 (𝑘 ∈ ℤ → (-1↑𝑘) ∈ ℤ)
2928adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → (-1↑𝑘) ∈ ℤ)
3027, 29cofmpt 7152 . . . . . 6 (𝜑 → (𝐿 ∘ (𝑘 ∈ ℤ ↦ (-1↑𝑘))) = (𝑘 ∈ ℤ ↦ (𝐿‘(-1↑𝑘))))
31 zringmpg 21500 . . . . . . . . 9 ((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring)
3231, 14rhmmhm 20496 . . . . . . . 8 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom 𝐺))
3324, 32syl 17 . . . . . . 7 (𝜑𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom 𝐺))
34 neg1cn 12378 . . . . . . . . . . 11 -1 ∈ ℂ
35 neg1ne0 12380 . . . . . . . . . . 11 -1 ≠ 0
36 eqid 2735 . . . . . . . . . . . 12 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
37 eqid 2735 . . . . . . . . . . . 12 ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
3836, 37expghm 21504 . . . . . . . . . . 11 ((-1 ∈ ℂ ∧ -1 ≠ 0) → (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring GrpHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))))
3934, 35, 38mp2an 692 . . . . . . . . . 10 (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring GrpHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
40 ghmmhm 19257 . . . . . . . . . 10 ((𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring GrpHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))))
4139, 40ax-mp 5 . . . . . . . . 9 (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
42 cnring 21421 . . . . . . . . . 10 fld ∈ Ring
43 cnfldbas 21386 . . . . . . . . . . . 12 ℂ = (Base‘ℂfld)
44 cnfld0 21423 . . . . . . . . . . . 12 0 = (0g‘ℂfld)
45 cndrng 21429 . . . . . . . . . . . 12 fld ∈ DivRing
4643, 44, 45drngui 20752 . . . . . . . . . . 11 (ℂ ∖ {0}) = (Unit‘ℂfld)
4746, 36unitsubm 20403 . . . . . . . . . 10 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)))
4842, 47ax-mp 5 . . . . . . . . 9 (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld))
4937resmhm2 18847 . . . . . . . . 9 (((𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) ∧ (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld))) → (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom (mulGrp‘ℂfld)))
5041, 48, 49mp2an 692 . . . . . . . 8 (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom (mulGrp‘ℂfld))
51 zsubrg 21456 . . . . . . . . . 10 ℤ ∈ (SubRing‘ℂfld)
5236subrgsubm 20602 . . . . . . . . . 10 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)))
5351, 52ax-mp 5 . . . . . . . . 9 ℤ ∈ (SubMnd‘(mulGrp‘ℂfld))
5429fmpttd 7135 . . . . . . . . . 10 (𝜑 → (𝑘 ∈ ℤ ↦ (-1↑𝑘)):ℤ⟶ℤ)
5554frnd 6745 . . . . . . . . 9 (𝜑 → ran (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ⊆ ℤ)
56 eqid 2735 . . . . . . . . . 10 ((mulGrp‘ℂfld) ↾s ℤ) = ((mulGrp‘ℂfld) ↾s ℤ)
5756resmhm2b 18848 . . . . . . . . 9 ((ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ ran (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ⊆ ℤ) → ((𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom (mulGrp‘ℂfld)) ↔ (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s ℤ))))
5853, 55, 57sylancr 587 . . . . . . . 8 (𝜑 → ((𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom (mulGrp‘ℂfld)) ↔ (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s ℤ))))
5950, 58mpbii 233 . . . . . . 7 (𝜑 → (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s ℤ)))
60 mhmco 18849 . . . . . . 7 ((𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom 𝐺) ∧ (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s ℤ))) → (𝐿 ∘ (𝑘 ∈ ℤ ↦ (-1↑𝑘))) ∈ (ℤring MndHom 𝐺))
6133, 59, 60syl2anc 584 . . . . . 6 (𝜑 → (𝐿 ∘ (𝑘 ∈ ℤ ↦ (-1↑𝑘))) ∈ (ℤring MndHom 𝐺))
6230, 61eqeltrrd 2840 . . . . 5 (𝜑 → (𝑘 ∈ ℤ ↦ (𝐿‘(-1↑𝑘))) ∈ (ℤring MndHom 𝐺))
63 lgseisen.2 . . . . . . . . . . 11 (𝜑𝑄 ∈ (ℙ ∖ {2}))
6463gausslemma2dlem0a 27415 . . . . . . . . . 10 (𝜑𝑄 ∈ ℕ)
6564nnred 12279 . . . . . . . . 9 (𝜑𝑄 ∈ ℝ)
666gausslemma2dlem0a 27415 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
6765, 66nndivred 12318 . . . . . . . 8 (𝜑 → (𝑄 / 𝑃) ∈ ℝ)
6867adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 / 𝑃) ∈ ℝ)
69 2nn 12337 . . . . . . . . 9 2 ∈ ℕ
70 elfznn 13590 . . . . . . . . . 10 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℕ)
7170adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℕ)
72 nnmulcl 12288 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (2 · 𝑥) ∈ ℕ)
7369, 71, 72sylancr 587 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℕ)
7473nnred 12279 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℝ)
7568, 74remulcld 11289 . . . . . 6 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 / 𝑃) · (2 · 𝑥)) ∈ ℝ)
7675flcld 13835 . . . . 5 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ)
77 eqid 2735 . . . . . 6 (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))
78 fvexd 6922 . . . . . 6 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ V)
79 c0ex 11253 . . . . . . 7 0 ∈ V
8079a1i 11 . . . . . 6 (𝜑 → 0 ∈ V)
8177, 19, 78, 80fsuppmptdm 9414 . . . . 5 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) finSupp 0)
82 oveq2 7439 . . . . . 6 (𝑘 = (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) → (-1↑𝑘) = (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
8382fveq2d 6911 . . . . 5 (𝑘 = (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) → (𝐿‘(-1↑𝑘)) = (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
84 oveq2 7439 . . . . . 6 (𝑘 = (ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) → (-1↑𝑘) = (-1↑(ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
8584fveq2d 6911 . . . . 5 (𝑘 = (ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) → (𝐿‘(-1↑𝑘)) = (𝐿‘(-1↑(ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))))
861, 2, 5, 18, 19, 62, 76, 81, 83, 85gsummhm2 19972 . . . 4 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) = (𝐿‘(-1↑(ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))))
8714, 25mgpbas 20158 . . . . . . 7 (Base‘𝑌) = (Base‘𝐺)
88 eqid 2735 . . . . . . . 8 (.r𝑌) = (.r𝑌)
8914, 88mgpplusg 20156 . . . . . . 7 (.r𝑌) = (+g𝐺)
9027adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝐿:ℤ⟶(Base‘𝑌))
91 m1expcl 14124 . . . . . . . . 9 ((⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ → (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ)
9276, 91syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ)
9390, 92ffvelcdmd 7105 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ∈ (Base‘𝑌))
94 neg1z 12651 . . . . . . . . . 10 -1 ∈ ℤ
95 lgseisen.4 . . . . . . . . . . 11 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃)
9663eldifad 3975 . . . . . . . . . . . . . . 15 (𝜑𝑄 ∈ ℙ)
9796adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℙ)
98 prmz 16709 . . . . . . . . . . . . . 14 (𝑄 ∈ ℙ → 𝑄 ∈ ℤ)
9997, 98syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℤ)
10073nnzd 12638 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℤ)
10199, 100zmulcld 12726 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℤ)
1027adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℙ)
103 prmnn 16708 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
104102, 103syl 17 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℕ)
105101, 104zmodcld 13929 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) mod 𝑃) ∈ ℕ0)
10695, 105eqeltrid 2843 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 ∈ ℕ0)
107 zexpcl 14114 . . . . . . . . . 10 ((-1 ∈ ℤ ∧ 𝑅 ∈ ℕ0) → (-1↑𝑅) ∈ ℤ)
10894, 106, 107sylancr 587 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑅) ∈ ℤ)
109108, 99zmulcld 12726 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑅) · 𝑄) ∈ ℤ)
11090, 109ffvelcdmd 7105 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘((-1↑𝑅) · 𝑄)) ∈ (Base‘𝑌))
111 eqid 2735 . . . . . . 7 (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
112 eqid 2735 . . . . . . 7 (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))
11387, 89, 16, 19, 93, 110, 111, 112gsummptfidmadd2 19959 . . . . . 6 (𝜑 → (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘f (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))) = ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))))
114 eqidd 2736 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
115 eqidd 2736 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))
11619, 93, 110, 114, 115offval2 7717 . . . . . . . 8 (𝜑 → ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘f (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r𝑌)(𝐿‘((-1↑𝑅) · 𝑄)))))
11724adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝐿 ∈ (ℤring RingHom 𝑌))
118 zringmulr 21486 . . . . . . . . . . . 12 · = (.r‘ℤring)
1191, 118, 88rhmmul 20503 . . . . . . . . . . 11 ((𝐿 ∈ (ℤring RingHom 𝑌) ∧ (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ ∧ ((-1↑𝑅) · 𝑄) ∈ ℤ) → (𝐿‘((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄))) = ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r𝑌)(𝐿‘((-1↑𝑅) · 𝑄))))
120117, 92, 109, 119syl3anc 1370 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄))) = ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r𝑌)(𝐿‘((-1↑𝑅) · 𝑄))))
121101zred 12720 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℝ)
122104nnrpd 13073 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℝ+)
123 modval 13908 . . . . . . . . . . . . . . . . . . . 20 (((𝑄 · (2 · 𝑥)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((𝑄 · (2 · 𝑥)) mod 𝑃) = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃)))))
124121, 122, 123syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) mod 𝑃) = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃)))))
12595, 124eqtrid 2787 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃)))))
12699zcnd 12721 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℂ)
12773nncnd 12280 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℂ)
128104nncnd 12280 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℂ)
129104nnne0d 12314 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ≠ 0)
130126, 127, 128, 129div23d 12078 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) / 𝑃) = ((𝑄 / 𝑃) · (2 · 𝑥)))
131130fveq2d 6911 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃)) = (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))
132131oveq2d 7447 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃))) = (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
133132oveq2d 7447 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃)))) = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
134125, 133eqtrd 2775 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
135134oveq2d 7447 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅) = ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
136 prmz 16709 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
137102, 136syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℤ)
138137, 76zmulcld 12726 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ)
139138zcnd 12721 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℂ)
140101zcnd 12721 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℂ)
141139, 140pncan3d 11621 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) = (𝑄 · (2 · 𝑥)))
142 2cnd 12342 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈ ℂ)
14371nncnd 12280 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℂ)
144126, 142, 143mul12d 11468 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) = (2 · (𝑄 · 𝑥)))
145135, 141, 1443eqtrd 2779 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅) = (2 · (𝑄 · 𝑥)))
146145oveq2d 7447 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅)) = (-1↑(2 · (𝑄 · 𝑥))))
14734a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → -1 ∈ ℂ)
14835a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → -1 ≠ 0)
149106nn0zd 12637 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 ∈ ℤ)
150 expaddz 14144 . . . . . . . . . . . . . . . 16 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ ∧ 𝑅 ∈ ℤ)) → (-1↑((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅)) = ((-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) · (-1↑𝑅)))
151147, 148, 138, 149, 150syl22anc 839 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅)) = ((-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) · (-1↑𝑅)))
152 expmulz 14146 . . . . . . . . . . . . . . . . . 18 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝑃 ∈ ℤ ∧ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ)) → (-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = ((-1↑𝑃)↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
153147, 148, 137, 76, 152syl22anc 839 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = ((-1↑𝑃)↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
154 1cnd 11254 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 1 ∈ ℂ)
155 eldifsni 4795 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
1566, 155syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑃 ≠ 2)
157156necomd 2994 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 2 ≠ 𝑃)
158157neneqd 2943 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ¬ 2 = 𝑃)
159158adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ¬ 2 = 𝑃)
160 2z 12647 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℤ
161 uzid 12891 . . . . . . . . . . . . . . . . . . . . . . 23 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
162160, 161ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ (ℤ‘2)
163 dvdsprm 16737 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (2 ∥ 𝑃 ↔ 2 = 𝑃))
164162, 102, 163sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 ∥ 𝑃 ↔ 2 = 𝑃))
165159, 164mtbird 325 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ¬ 2 ∥ 𝑃)
166 oexpneg 16379 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℂ ∧ 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (-1↑𝑃) = -(1↑𝑃))
167154, 104, 165, 166syl3anc 1370 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑃) = -(1↑𝑃))
168 1exp 14129 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℤ → (1↑𝑃) = 1)
169137, 168syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (1↑𝑃) = 1)
170169negeqd 11500 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → -(1↑𝑃) = -1)
171167, 170eqtrd 2775 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑃) = -1)
172171oveq1d 7446 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑃)↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
173153, 172eqtrd 2775 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
174173oveq1d 7446 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) · (-1↑𝑅)) = ((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅)))
175151, 174eqtrd 2775 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅)) = ((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅)))
176 nnmulcl 12288 . . . . . . . . . . . . . . . . . 18 ((𝑄 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (𝑄 · 𝑥) ∈ ℕ)
17764, 70, 176syl2an 596 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · 𝑥) ∈ ℕ)
178177nnnn0d 12585 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · 𝑥) ∈ ℕ0)
179 2nn0 12541 . . . . . . . . . . . . . . . . 17 2 ∈ ℕ0
180179a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈ ℕ0)
181147, 178, 180expmuld 14186 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(2 · (𝑄 · 𝑥))) = ((-1↑2)↑(𝑄 · 𝑥)))
182 neg1sqe1 14232 . . . . . . . . . . . . . . . . 17 (-1↑2) = 1
183182oveq1i 7441 . . . . . . . . . . . . . . . 16 ((-1↑2)↑(𝑄 · 𝑥)) = (1↑(𝑄 · 𝑥))
184177nnzd 12638 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · 𝑥) ∈ ℤ)
185 1exp 14129 . . . . . . . . . . . . . . . . 17 ((𝑄 · 𝑥) ∈ ℤ → (1↑(𝑄 · 𝑥)) = 1)
186184, 185syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (1↑(𝑄 · 𝑥)) = 1)
187183, 186eqtrid 2787 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑2)↑(𝑄 · 𝑥)) = 1)
188181, 187eqtrd 2775 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(2 · (𝑄 · 𝑥))) = 1)
189146, 175, 1883eqtr3d 2783 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅)) = 1)
190189oveq1d 7446 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅)) · 𝑄) = (1 · 𝑄))
19192zcnd 12721 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℂ)
192108zcnd 12721 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑅) ∈ ℂ)
193191, 192, 126mulassd 11282 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅)) · 𝑄) = ((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄)))
194126mullidd 11277 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (1 · 𝑄) = 𝑄)
195190, 193, 1943eqtr3d 2783 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄)) = 𝑄)
196195fveq2d 6911 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄))) = (𝐿𝑄))
197120, 196eqtr3d 2777 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r𝑌)(𝐿‘((-1↑𝑅) · 𝑄))) = (𝐿𝑄))
198197mpteq2dva 5248 . . . . . . . 8 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r𝑌)(𝐿‘((-1↑𝑅) · 𝑄)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄)))
199116, 198eqtrd 2775 . . . . . . 7 (𝜑 → ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘f (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄)))
200199oveq2d 7447 . . . . . 6 (𝜑 → (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘f (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄))))
201 lgseisen.3 . . . . . . . 8 (𝜑𝑃𝑄)
202 lgseisen.5 . . . . . . . 8 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))
203 lgseisen.6 . . . . . . . 8 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃)
2046, 63, 201, 95, 202, 203, 8, 14, 22lgseisenlem3 27436 . . . . . . 7 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (1r𝑌))
205204oveq2d 7447 . . . . . 6 (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))) = ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r𝑌)(1r𝑌)))
206113, 200, 2053eqtr3rd 2784 . . . . 5 (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r𝑌)(1r𝑌)) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄))))
207 eqid 2735 . . . . . . 7 (0g𝐺) = (0g𝐺)
20893fmpttd 7135 . . . . . . 7 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))):(1...((𝑃 − 1) / 2))⟶(Base‘𝑌))
209 fvexd 6922 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ∈ V)
210 fvexd 6922 . . . . . . . 8 (𝜑 → (0g𝐺) ∈ V)
211111, 19, 209, 210fsuppmptdm 9414 . . . . . . 7 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) finSupp (0g𝐺))
21287, 207, 16, 19, 208, 211gsumcl 19948 . . . . . 6 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) ∈ (Base‘𝑌))
213 eqid 2735 . . . . . . 7 (1r𝑌) = (1r𝑌)
21425, 88, 213ringridm 20284 . . . . . 6 ((𝑌 ∈ Ring ∧ (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) ∈ (Base‘𝑌)) → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r𝑌)(1r𝑌)) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))))
21521, 212, 214syl2anc 584 . . . . 5 (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r𝑌)(1r𝑌)) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))))
21696, 98syl 17 . . . . . . . 8 (𝜑𝑄 ∈ ℤ)
21727, 216ffvelcdmd 7105 . . . . . . 7 (𝜑 → (𝐿𝑄) ∈ (Base‘𝑌))
218 eqid 2735 . . . . . . . 8 (.g𝐺) = (.g𝐺)
21987, 218gsumconst 19967 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (1...((𝑃 − 1) / 2)) ∈ Fin ∧ (𝐿𝑄) ∈ (Base‘𝑌)) → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄))) = ((♯‘(1...((𝑃 − 1) / 2)))(.g𝐺)(𝐿𝑄)))
22018, 19, 217, 219syl3anc 1370 . . . . . 6 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄))) = ((♯‘(1...((𝑃 − 1) / 2)))(.g𝐺)(𝐿𝑄)))
221 oddprm 16844 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
2226, 221syl 17 . . . . . . . . 9 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
223222nnnn0d 12585 . . . . . . . 8 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
224 hashfz1 14382 . . . . . . . 8 (((𝑃 − 1) / 2) ∈ ℕ0 → (♯‘(1...((𝑃 − 1) / 2))) = ((𝑃 − 1) / 2))
225223, 224syl 17 . . . . . . 7 (𝜑 → (♯‘(1...((𝑃 − 1) / 2))) = ((𝑃 − 1) / 2))
226225oveq1d 7446 . . . . . 6 (𝜑 → ((♯‘(1...((𝑃 − 1) / 2)))(.g𝐺)(𝐿𝑄)) = (((𝑃 − 1) / 2)(.g𝐺)(𝐿𝑄)))
22731, 1mgpbas 20158 . . . . . . . . 9 ℤ = (Base‘((mulGrp‘ℂfld) ↾s ℤ))
228 eqid 2735 . . . . . . . . 9 (.g‘((mulGrp‘ℂfld) ↾s ℤ)) = (.g‘((mulGrp‘ℂfld) ↾s ℤ))
229227, 228, 218mhmmulg 19146 . . . . . . . 8 ((𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom 𝐺) ∧ ((𝑃 − 1) / 2) ∈ ℕ0𝑄 ∈ ℤ) → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑄)) = (((𝑃 − 1) / 2)(.g𝐺)(𝐿𝑄)))
23033, 223, 216, 229syl3anc 1370 . . . . . . 7 (𝜑 → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑄)) = (((𝑃 − 1) / 2)(.g𝐺)(𝐿𝑄)))
23153a1i 11 . . . . . . . . . 10 (𝜑 → ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)))
232 eqid 2735 . . . . . . . . . . 11 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
233232, 56, 228submmulg 19149 . . . . . . . . . 10 ((ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ ((𝑃 − 1) / 2) ∈ ℕ0𝑄 ∈ ℤ) → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝑄) = (((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑄))
234231, 223, 216, 233syl3anc 1370 . . . . . . . . 9 (𝜑 → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝑄) = (((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑄))
235216zcnd 12721 . . . . . . . . . 10 (𝜑𝑄 ∈ ℂ)
236 cnfldexp 21435 . . . . . . . . . 10 ((𝑄 ∈ ℂ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝑄) = (𝑄↑((𝑃 − 1) / 2)))
237235, 223, 236syl2anc 584 . . . . . . . . 9 (𝜑 → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝑄) = (𝑄↑((𝑃 − 1) / 2)))
238234, 237eqtr3d 2777 . . . . . . . 8 (𝜑 → (((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑄) = (𝑄↑((𝑃 − 1) / 2)))
239238fveq2d 6911 . . . . . . 7 (𝜑 → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑄)) = (𝐿‘(𝑄↑((𝑃 − 1) / 2))))
240230, 239eqtr3d 2777 . . . . . 6 (𝜑 → (((𝑃 − 1) / 2)(.g𝐺)(𝐿𝑄)) = (𝐿‘(𝑄↑((𝑃 − 1) / 2))))
241220, 226, 2403eqtrd 2779 . . . . 5 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄))) = (𝐿‘(𝑄↑((𝑃 − 1) / 2))))
242206, 215, 2413eqtr3d 2783 . . . 4 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) = (𝐿‘(𝑄↑((𝑃 − 1) / 2))))
243 subrgsubg 20594 . . . . . . . . . 10 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubGrp‘ℂfld))
24451, 243ax-mp 5 . . . . . . . . 9 ℤ ∈ (SubGrp‘ℂfld)
245 subgsubm 19179 . . . . . . . . 9 (ℤ ∈ (SubGrp‘ℂfld) → ℤ ∈ (SubMnd‘ℂfld))
246244, 245mp1i 13 . . . . . . . 8 (𝜑 → ℤ ∈ (SubMnd‘ℂfld))
24776fmpttd 7135 . . . . . . . 8 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))):(1...((𝑃 − 1) / 2))⟶ℤ)
248 df-zring 21476 . . . . . . . 8 ring = (ℂflds ℤ)
24919, 246, 247, 248gsumsubm 18861 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = (ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
25076zcnd 12721 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℂ)
25119, 250gsumfsum 21470 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))
252249, 251eqtr3d 2777 . . . . . 6 (𝜑 → (ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))
253252oveq2d 7447 . . . . 5 (𝜑 → (-1↑(ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
254253fveq2d 6911 . . . 4 (𝜑 → (𝐿‘(-1↑(ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) = (𝐿‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
25586, 242, 2543eqtr3d 2783 . . 3 (𝜑 → (𝐿‘(𝑄↑((𝑃 − 1) / 2))) = (𝐿‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
25666nnnn0d 12585 . . . 4 (𝜑𝑃 ∈ ℕ0)
257 zexpcl 14114 . . . . 5 ((𝑄 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝑄↑((𝑃 − 1) / 2)) ∈ ℤ)
258216, 223, 257syl2anc 584 . . . 4 (𝜑 → (𝑄↑((𝑃 − 1) / 2)) ∈ ℤ)
25919, 76fsumzcl 15768 . . . . 5 (𝜑 → Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ)
260 m1expcl 14124 . . . . 5 𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ)
261259, 260syl 17 . . . 4 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ)
2628, 22zndvds 21586 . . . 4 ((𝑃 ∈ ℕ0 ∧ (𝑄↑((𝑃 − 1) / 2)) ∈ ℤ ∧ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ) → ((𝐿‘(𝑄↑((𝑃 − 1) / 2))) = (𝐿‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ↔ 𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) − (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
263256, 258, 261, 262syl3anc 1370 . . 3 (𝜑 → ((𝐿‘(𝑄↑((𝑃 − 1) / 2))) = (𝐿‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ↔ 𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) − (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
264255, 263mpbid 232 . 2 (𝜑𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) − (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
265 moddvds 16298 . . 3 ((𝑃 ∈ ℕ ∧ (𝑄↑((𝑃 − 1) / 2)) ∈ ℤ ∧ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ) → (((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃) ↔ 𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) − (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
26666, 258, 261, 265syl3anc 1370 . 2 (𝜑 → (((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃) ↔ 𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) − (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
267264, 266mpbird 257 1 (𝜑 → ((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478  cdif 3960  wss 3963  {csn 4631   class class class wbr 5148  cmpt 5231  ran crn 5690  ccom 5693  wf 6559  cfv 6563  (class class class)co 7431  f cof 7695  Fincfn 8984  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490  -cneg 11491   / cdiv 11918  cn 12264  2c2 12319  0cn0 12524  cz 12611  cuz 12876  +crp 13032  ...cfz 13544  cfl 13827   mod cmo 13906  cexp 14099  chash 14366  Σcsu 15719  cdvds 16287  cprime 16705  Basecbs 17245  s cress 17274  .rcmulr 17299  0gc0g 17486   Σg cgsu 17487  Mndcmnd 18760   MndHom cmhm 18807  SubMndcsubmnd 18808  .gcmg 19098  SubGrpcsubg 19151   GrpHom cghm 19243  CMndccmn 19813  Abelcabl 19814  mulGrpcmgp 20152  1rcur 20199  Ringcrg 20251  CRingccrg 20252   RingHom crh 20486  SubRingcsubrg 20586  DivRingcdr 20746  Fieldcfield 20747  fldccnfld 21382  ringczring 21475  ℤRHomczrh 21528  ℤ/nczn 21531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-ec 8746  df-qs 8750  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12598  df-z 12612  df-dec 12732  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-dvds 16288  df-gcd 16529  df-prm 16706  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-0g 17488  df-gsum 17489  df-imas 17555  df-qus 17556  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-nsg 19155  df-eqg 19156  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-rhm 20489  df-nzr 20530  df-subrng 20563  df-subrg 20587  df-rlreg 20711  df-domn 20712  df-idom 20713  df-drng 20748  df-field 20749  df-lmod 20877  df-lss 20948  df-lsp 20988  df-sra 21190  df-rgmod 21191  df-lidl 21236  df-rsp 21237  df-2idl 21278  df-cnfld 21383  df-zring 21476  df-zrh 21532  df-zn 21535
This theorem is referenced by:  lgseisen  27438
  Copyright terms: Public domain W3C validator