MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgseisenlem4 Structured version   Visualization version   GIF version

Theorem lgseisenlem4 27423
Description: Lemma for lgseisen 27424. (Contributed by Mario Carneiro, 18-Jun-2015.) (Proof shortened by AV, 15-Jun-2019.)
Hypotheses
Ref Expression
lgseisen.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgseisen.2 (𝜑𝑄 ∈ (ℙ ∖ {2}))
lgseisen.3 (𝜑𝑃𝑄)
lgseisen.4 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃)
lgseisen.5 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))
lgseisen.6 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃)
lgseisen.7 𝑌 = (ℤ/nℤ‘𝑃)
lgseisen.8 𝐺 = (mulGrp‘𝑌)
lgseisen.9 𝐿 = (ℤRHom‘𝑌)
Assertion
Ref Expression
lgseisenlem4 (𝜑 → ((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐿   𝑥,𝑦,𝑃   𝜑,𝑥,𝑦   𝑦,𝑀   𝑥,𝑄,𝑦   𝑥,𝑌   𝑥,𝑆
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝑆(𝑦)   𝐺(𝑦)   𝐿(𝑦)   𝑀(𝑥)   𝑌(𝑦)

Proof of Theorem lgseisenlem4
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 zringbas 21465 . . . . 5 ℤ = (Base‘ℤring)
2 zring0 21470 . . . . 5 0 = (0g‘ℤring)
3 zringabl 21463 . . . . . 6 ring ∈ Abel
4 ablcmn 19806 . . . . . 6 (ℤring ∈ Abel → ℤring ∈ CMnd)
53, 4mp1i 13 . . . . 5 (𝜑 → ℤring ∈ CMnd)
6 lgseisen.1 . . . . . . . . . 10 (𝜑𝑃 ∈ (ℙ ∖ {2}))
76eldifad 3962 . . . . . . . . 9 (𝜑𝑃 ∈ ℙ)
8 lgseisen.7 . . . . . . . . . 10 𝑌 = (ℤ/nℤ‘𝑃)
98znfld 21580 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑌 ∈ Field)
107, 9syl 17 . . . . . . . 8 (𝜑𝑌 ∈ Field)
11 isfld 20741 . . . . . . . . 9 (𝑌 ∈ Field ↔ (𝑌 ∈ DivRing ∧ 𝑌 ∈ CRing))
1211simprbi 496 . . . . . . . 8 (𝑌 ∈ Field → 𝑌 ∈ CRing)
1310, 12syl 17 . . . . . . 7 (𝜑𝑌 ∈ CRing)
14 lgseisen.8 . . . . . . . 8 𝐺 = (mulGrp‘𝑌)
1514crngmgp 20239 . . . . . . 7 (𝑌 ∈ CRing → 𝐺 ∈ CMnd)
1613, 15syl 17 . . . . . 6 (𝜑𝐺 ∈ CMnd)
17 cmnmnd 19816 . . . . . 6 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
1816, 17syl 17 . . . . 5 (𝜑𝐺 ∈ Mnd)
19 fzfid 14015 . . . . 5 (𝜑 → (1...((𝑃 − 1) / 2)) ∈ Fin)
20 crngring 20243 . . . . . . . . . 10 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
2113, 20syl 17 . . . . . . . . 9 (𝜑𝑌 ∈ Ring)
22 lgseisen.9 . . . . . . . . . 10 𝐿 = (ℤRHom‘𝑌)
2322zrhrhm 21523 . . . . . . . . 9 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
2421, 23syl 17 . . . . . . . 8 (𝜑𝐿 ∈ (ℤring RingHom 𝑌))
25 eqid 2736 . . . . . . . . 9 (Base‘𝑌) = (Base‘𝑌)
261, 25rhmf 20486 . . . . . . . 8 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
2724, 26syl 17 . . . . . . 7 (𝜑𝐿:ℤ⟶(Base‘𝑌))
28 m1expcl 14128 . . . . . . . 8 (𝑘 ∈ ℤ → (-1↑𝑘) ∈ ℤ)
2928adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → (-1↑𝑘) ∈ ℤ)
3027, 29cofmpt 7151 . . . . . 6 (𝜑 → (𝐿 ∘ (𝑘 ∈ ℤ ↦ (-1↑𝑘))) = (𝑘 ∈ ℤ ↦ (𝐿‘(-1↑𝑘))))
31 zringmpg 21483 . . . . . . . . 9 ((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring)
3231, 14rhmmhm 20480 . . . . . . . 8 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom 𝐺))
3324, 32syl 17 . . . . . . 7 (𝜑𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom 𝐺))
34 neg1cn 12381 . . . . . . . . . . 11 -1 ∈ ℂ
35 neg1ne0 12383 . . . . . . . . . . 11 -1 ≠ 0
36 eqid 2736 . . . . . . . . . . . 12 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
37 eqid 2736 . . . . . . . . . . . 12 ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
3836, 37expghm 21487 . . . . . . . . . . 11 ((-1 ∈ ℂ ∧ -1 ≠ 0) → (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring GrpHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))))
3934, 35, 38mp2an 692 . . . . . . . . . 10 (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring GrpHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
40 ghmmhm 19245 . . . . . . . . . 10 ((𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring GrpHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))))
4139, 40ax-mp 5 . . . . . . . . 9 (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
42 cnring 21404 . . . . . . . . . 10 fld ∈ Ring
43 cnfldbas 21369 . . . . . . . . . . . 12 ℂ = (Base‘ℂfld)
44 cnfld0 21406 . . . . . . . . . . . 12 0 = (0g‘ℂfld)
45 cndrng 21412 . . . . . . . . . . . 12 fld ∈ DivRing
4643, 44, 45drngui 20736 . . . . . . . . . . 11 (ℂ ∖ {0}) = (Unit‘ℂfld)
4746, 36unitsubm 20387 . . . . . . . . . 10 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)))
4842, 47ax-mp 5 . . . . . . . . 9 (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld))
4937resmhm2 18835 . . . . . . . . 9 (((𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) ∧ (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld))) → (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom (mulGrp‘ℂfld)))
5041, 48, 49mp2an 692 . . . . . . . 8 (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom (mulGrp‘ℂfld))
51 zsubrg 21439 . . . . . . . . . 10 ℤ ∈ (SubRing‘ℂfld)
5236subrgsubm 20586 . . . . . . . . . 10 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)))
5351, 52ax-mp 5 . . . . . . . . 9 ℤ ∈ (SubMnd‘(mulGrp‘ℂfld))
5429fmpttd 7134 . . . . . . . . . 10 (𝜑 → (𝑘 ∈ ℤ ↦ (-1↑𝑘)):ℤ⟶ℤ)
5554frnd 6743 . . . . . . . . 9 (𝜑 → ran (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ⊆ ℤ)
56 eqid 2736 . . . . . . . . . 10 ((mulGrp‘ℂfld) ↾s ℤ) = ((mulGrp‘ℂfld) ↾s ℤ)
5756resmhm2b 18836 . . . . . . . . 9 ((ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ ran (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ⊆ ℤ) → ((𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom (mulGrp‘ℂfld)) ↔ (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s ℤ))))
5853, 55, 57sylancr 587 . . . . . . . 8 (𝜑 → ((𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom (mulGrp‘ℂfld)) ↔ (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s ℤ))))
5950, 58mpbii 233 . . . . . . 7 (𝜑 → (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s ℤ)))
60 mhmco 18837 . . . . . . 7 ((𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom 𝐺) ∧ (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom ((mulGrp‘ℂfld) ↾s ℤ))) → (𝐿 ∘ (𝑘 ∈ ℤ ↦ (-1↑𝑘))) ∈ (ℤring MndHom 𝐺))
6133, 59, 60syl2anc 584 . . . . . 6 (𝜑 → (𝐿 ∘ (𝑘 ∈ ℤ ↦ (-1↑𝑘))) ∈ (ℤring MndHom 𝐺))
6230, 61eqeltrrd 2841 . . . . 5 (𝜑 → (𝑘 ∈ ℤ ↦ (𝐿‘(-1↑𝑘))) ∈ (ℤring MndHom 𝐺))
63 lgseisen.2 . . . . . . . . . . 11 (𝜑𝑄 ∈ (ℙ ∖ {2}))
6463gausslemma2dlem0a 27401 . . . . . . . . . 10 (𝜑𝑄 ∈ ℕ)
6564nnred 12282 . . . . . . . . 9 (𝜑𝑄 ∈ ℝ)
666gausslemma2dlem0a 27401 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
6765, 66nndivred 12321 . . . . . . . 8 (𝜑 → (𝑄 / 𝑃) ∈ ℝ)
6867adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 / 𝑃) ∈ ℝ)
69 2nn 12340 . . . . . . . . 9 2 ∈ ℕ
70 elfznn 13594 . . . . . . . . . 10 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℕ)
7170adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℕ)
72 nnmulcl 12291 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (2 · 𝑥) ∈ ℕ)
7369, 71, 72sylancr 587 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℕ)
7473nnred 12282 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℝ)
7568, 74remulcld 11292 . . . . . 6 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 / 𝑃) · (2 · 𝑥)) ∈ ℝ)
7675flcld 13839 . . . . 5 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ)
77 eqid 2736 . . . . . 6 (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))
78 fvexd 6920 . . . . . 6 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ V)
79 c0ex 11256 . . . . . . 7 0 ∈ V
8079a1i 11 . . . . . 6 (𝜑 → 0 ∈ V)
8177, 19, 78, 80fsuppmptdm 9417 . . . . 5 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) finSupp 0)
82 oveq2 7440 . . . . . 6 (𝑘 = (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) → (-1↑𝑘) = (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
8382fveq2d 6909 . . . . 5 (𝑘 = (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) → (𝐿‘(-1↑𝑘)) = (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
84 oveq2 7440 . . . . . 6 (𝑘 = (ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) → (-1↑𝑘) = (-1↑(ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
8584fveq2d 6909 . . . . 5 (𝑘 = (ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) → (𝐿‘(-1↑𝑘)) = (𝐿‘(-1↑(ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))))
861, 2, 5, 18, 19, 62, 76, 81, 83, 85gsummhm2 19958 . . . 4 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) = (𝐿‘(-1↑(ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))))
8714, 25mgpbas 20143 . . . . . . 7 (Base‘𝑌) = (Base‘𝐺)
88 eqid 2736 . . . . . . . 8 (.r𝑌) = (.r𝑌)
8914, 88mgpplusg 20142 . . . . . . 7 (.r𝑌) = (+g𝐺)
9027adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝐿:ℤ⟶(Base‘𝑌))
91 m1expcl 14128 . . . . . . . . 9 ((⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ → (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ)
9276, 91syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ)
9390, 92ffvelcdmd 7104 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ∈ (Base‘𝑌))
94 neg1z 12655 . . . . . . . . . 10 -1 ∈ ℤ
95 lgseisen.4 . . . . . . . . . . 11 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃)
9663eldifad 3962 . . . . . . . . . . . . . . 15 (𝜑𝑄 ∈ ℙ)
9796adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℙ)
98 prmz 16713 . . . . . . . . . . . . . 14 (𝑄 ∈ ℙ → 𝑄 ∈ ℤ)
9997, 98syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℤ)
10073nnzd 12642 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℤ)
10199, 100zmulcld 12730 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℤ)
1027adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℙ)
103 prmnn 16712 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
104102, 103syl 17 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℕ)
105101, 104zmodcld 13933 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) mod 𝑃) ∈ ℕ0)
10695, 105eqeltrid 2844 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 ∈ ℕ0)
107 zexpcl 14118 . . . . . . . . . 10 ((-1 ∈ ℤ ∧ 𝑅 ∈ ℕ0) → (-1↑𝑅) ∈ ℤ)
10894, 106, 107sylancr 587 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑅) ∈ ℤ)
109108, 99zmulcld 12730 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑅) · 𝑄) ∈ ℤ)
11090, 109ffvelcdmd 7104 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘((-1↑𝑅) · 𝑄)) ∈ (Base‘𝑌))
111 eqid 2736 . . . . . . 7 (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
112 eqid 2736 . . . . . . 7 (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))
11387, 89, 16, 19, 93, 110, 111, 112gsummptfidmadd2 19945 . . . . . 6 (𝜑 → (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘f (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))) = ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))))
114 eqidd 2737 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
115 eqidd 2737 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))
11619, 93, 110, 114, 115offval2 7718 . . . . . . . 8 (𝜑 → ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘f (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r𝑌)(𝐿‘((-1↑𝑅) · 𝑄)))))
11724adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝐿 ∈ (ℤring RingHom 𝑌))
118 zringmulr 21469 . . . . . . . . . . . 12 · = (.r‘ℤring)
1191, 118, 88rhmmul 20487 . . . . . . . . . . 11 ((𝐿 ∈ (ℤring RingHom 𝑌) ∧ (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ ∧ ((-1↑𝑅) · 𝑄) ∈ ℤ) → (𝐿‘((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄))) = ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r𝑌)(𝐿‘((-1↑𝑅) · 𝑄))))
120117, 92, 109, 119syl3anc 1372 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄))) = ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r𝑌)(𝐿‘((-1↑𝑅) · 𝑄))))
121101zred 12724 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℝ)
122104nnrpd 13076 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℝ+)
123 modval 13912 . . . . . . . . . . . . . . . . . . . 20 (((𝑄 · (2 · 𝑥)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((𝑄 · (2 · 𝑥)) mod 𝑃) = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃)))))
124121, 122, 123syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) mod 𝑃) = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃)))))
12595, 124eqtrid 2788 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃)))))
12699zcnd 12725 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℂ)
12773nncnd 12283 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℂ)
128104nncnd 12283 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℂ)
129104nnne0d 12317 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ≠ 0)
130126, 127, 128, 129div23d 12081 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) / 𝑃) = ((𝑄 / 𝑃) · (2 · 𝑥)))
131130fveq2d 6909 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃)) = (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))
132131oveq2d 7448 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃))) = (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
133132oveq2d 7448 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃)))) = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
134125, 133eqtrd 2776 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
135134oveq2d 7448 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅) = ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
136 prmz 16713 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
137102, 136syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℤ)
138137, 76zmulcld 12730 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ)
139138zcnd 12725 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℂ)
140101zcnd 12725 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℂ)
141139, 140pncan3d 11624 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) = (𝑄 · (2 · 𝑥)))
142 2cnd 12345 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈ ℂ)
14371nncnd 12283 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℂ)
144126, 142, 143mul12d 11471 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) = (2 · (𝑄 · 𝑥)))
145135, 141, 1443eqtrd 2780 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅) = (2 · (𝑄 · 𝑥)))
146145oveq2d 7448 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅)) = (-1↑(2 · (𝑄 · 𝑥))))
14734a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → -1 ∈ ℂ)
14835a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → -1 ≠ 0)
149106nn0zd 12641 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 ∈ ℤ)
150 expaddz 14148 . . . . . . . . . . . . . . . 16 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ ∧ 𝑅 ∈ ℤ)) → (-1↑((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅)) = ((-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) · (-1↑𝑅)))
151147, 148, 138, 149, 150syl22anc 838 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅)) = ((-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) · (-1↑𝑅)))
152 expmulz 14150 . . . . . . . . . . . . . . . . . 18 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝑃 ∈ ℤ ∧ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ)) → (-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = ((-1↑𝑃)↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
153147, 148, 137, 76, 152syl22anc 838 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = ((-1↑𝑃)↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
154 1cnd 11257 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 1 ∈ ℂ)
155 eldifsni 4789 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
1566, 155syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑃 ≠ 2)
157156necomd 2995 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 2 ≠ 𝑃)
158157neneqd 2944 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ¬ 2 = 𝑃)
159158adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ¬ 2 = 𝑃)
160 2z 12651 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℤ
161 uzid 12894 . . . . . . . . . . . . . . . . . . . . . . 23 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
162160, 161ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ (ℤ‘2)
163 dvdsprm 16741 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (2 ∥ 𝑃 ↔ 2 = 𝑃))
164162, 102, 163sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 ∥ 𝑃 ↔ 2 = 𝑃))
165159, 164mtbird 325 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ¬ 2 ∥ 𝑃)
166 oexpneg 16383 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℂ ∧ 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (-1↑𝑃) = -(1↑𝑃))
167154, 104, 165, 166syl3anc 1372 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑃) = -(1↑𝑃))
168 1exp 14133 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℤ → (1↑𝑃) = 1)
169137, 168syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (1↑𝑃) = 1)
170169negeqd 11503 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → -(1↑𝑃) = -1)
171167, 170eqtrd 2776 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑃) = -1)
172171oveq1d 7447 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑃)↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
173153, 172eqtrd 2776 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
174173oveq1d 7447 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) · (-1↑𝑅)) = ((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅)))
175151, 174eqtrd 2776 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅)) = ((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅)))
176 nnmulcl 12291 . . . . . . . . . . . . . . . . . 18 ((𝑄 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (𝑄 · 𝑥) ∈ ℕ)
17764, 70, 176syl2an 596 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · 𝑥) ∈ ℕ)
178177nnnn0d 12589 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · 𝑥) ∈ ℕ0)
179 2nn0 12545 . . . . . . . . . . . . . . . . 17 2 ∈ ℕ0
180179a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈ ℕ0)
181147, 178, 180expmuld 14190 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(2 · (𝑄 · 𝑥))) = ((-1↑2)↑(𝑄 · 𝑥)))
182 neg1sqe1 14236 . . . . . . . . . . . . . . . . 17 (-1↑2) = 1
183182oveq1i 7442 . . . . . . . . . . . . . . . 16 ((-1↑2)↑(𝑄 · 𝑥)) = (1↑(𝑄 · 𝑥))
184177nnzd 12642 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · 𝑥) ∈ ℤ)
185 1exp 14133 . . . . . . . . . . . . . . . . 17 ((𝑄 · 𝑥) ∈ ℤ → (1↑(𝑄 · 𝑥)) = 1)
186184, 185syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (1↑(𝑄 · 𝑥)) = 1)
187183, 186eqtrid 2788 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑2)↑(𝑄 · 𝑥)) = 1)
188181, 187eqtrd 2776 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(2 · (𝑄 · 𝑥))) = 1)
189146, 175, 1883eqtr3d 2784 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅)) = 1)
190189oveq1d 7447 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅)) · 𝑄) = (1 · 𝑄))
19192zcnd 12725 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℂ)
192108zcnd 12725 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑅) ∈ ℂ)
193191, 192, 126mulassd 11285 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅)) · 𝑄) = ((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄)))
194126mullidd 11280 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (1 · 𝑄) = 𝑄)
195190, 193, 1943eqtr3d 2784 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄)) = 𝑄)
196195fveq2d 6909 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄))) = (𝐿𝑄))
197120, 196eqtr3d 2778 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r𝑌)(𝐿‘((-1↑𝑅) · 𝑄))) = (𝐿𝑄))
198197mpteq2dva 5241 . . . . . . . 8 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r𝑌)(𝐿‘((-1↑𝑅) · 𝑄)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄)))
199116, 198eqtrd 2776 . . . . . . 7 (𝜑 → ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘f (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄)))
200199oveq2d 7448 . . . . . 6 (𝜑 → (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘f (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄))))
201 lgseisen.3 . . . . . . . 8 (𝜑𝑃𝑄)
202 lgseisen.5 . . . . . . . 8 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))
203 lgseisen.6 . . . . . . . 8 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃)
2046, 63, 201, 95, 202, 203, 8, 14, 22lgseisenlem3 27422 . . . . . . 7 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (1r𝑌))
205204oveq2d 7448 . . . . . 6 (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))) = ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r𝑌)(1r𝑌)))
206113, 200, 2053eqtr3rd 2785 . . . . 5 (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r𝑌)(1r𝑌)) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄))))
207 eqid 2736 . . . . . . 7 (0g𝐺) = (0g𝐺)
20893fmpttd 7134 . . . . . . 7 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))):(1...((𝑃 − 1) / 2))⟶(Base‘𝑌))
209 fvexd 6920 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ∈ V)
210 fvexd 6920 . . . . . . . 8 (𝜑 → (0g𝐺) ∈ V)
211111, 19, 209, 210fsuppmptdm 9417 . . . . . . 7 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) finSupp (0g𝐺))
21287, 207, 16, 19, 208, 211gsumcl 19934 . . . . . 6 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) ∈ (Base‘𝑌))
213 eqid 2736 . . . . . . 7 (1r𝑌) = (1r𝑌)
21425, 88, 213ringridm 20268 . . . . . 6 ((𝑌 ∈ Ring ∧ (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) ∈ (Base‘𝑌)) → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r𝑌)(1r𝑌)) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))))
21521, 212, 214syl2anc 584 . . . . 5 (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r𝑌)(1r𝑌)) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))))
21696, 98syl 17 . . . . . . . 8 (𝜑𝑄 ∈ ℤ)
21727, 216ffvelcdmd 7104 . . . . . . 7 (𝜑 → (𝐿𝑄) ∈ (Base‘𝑌))
218 eqid 2736 . . . . . . . 8 (.g𝐺) = (.g𝐺)
21987, 218gsumconst 19953 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (1...((𝑃 − 1) / 2)) ∈ Fin ∧ (𝐿𝑄) ∈ (Base‘𝑌)) → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄))) = ((♯‘(1...((𝑃 − 1) / 2)))(.g𝐺)(𝐿𝑄)))
22018, 19, 217, 219syl3anc 1372 . . . . . 6 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄))) = ((♯‘(1...((𝑃 − 1) / 2)))(.g𝐺)(𝐿𝑄)))
221 oddprm 16849 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
2226, 221syl 17 . . . . . . . . 9 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
223222nnnn0d 12589 . . . . . . . 8 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
224 hashfz1 14386 . . . . . . . 8 (((𝑃 − 1) / 2) ∈ ℕ0 → (♯‘(1...((𝑃 − 1) / 2))) = ((𝑃 − 1) / 2))
225223, 224syl 17 . . . . . . 7 (𝜑 → (♯‘(1...((𝑃 − 1) / 2))) = ((𝑃 − 1) / 2))
226225oveq1d 7447 . . . . . 6 (𝜑 → ((♯‘(1...((𝑃 − 1) / 2)))(.g𝐺)(𝐿𝑄)) = (((𝑃 − 1) / 2)(.g𝐺)(𝐿𝑄)))
22731, 1mgpbas 20143 . . . . . . . . 9 ℤ = (Base‘((mulGrp‘ℂfld) ↾s ℤ))
228 eqid 2736 . . . . . . . . 9 (.g‘((mulGrp‘ℂfld) ↾s ℤ)) = (.g‘((mulGrp‘ℂfld) ↾s ℤ))
229227, 228, 218mhmmulg 19134 . . . . . . . 8 ((𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom 𝐺) ∧ ((𝑃 − 1) / 2) ∈ ℕ0𝑄 ∈ ℤ) → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑄)) = (((𝑃 − 1) / 2)(.g𝐺)(𝐿𝑄)))
23033, 223, 216, 229syl3anc 1372 . . . . . . 7 (𝜑 → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑄)) = (((𝑃 − 1) / 2)(.g𝐺)(𝐿𝑄)))
23153a1i 11 . . . . . . . . . 10 (𝜑 → ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)))
232 eqid 2736 . . . . . . . . . . 11 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
233232, 56, 228submmulg 19137 . . . . . . . . . 10 ((ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ ((𝑃 − 1) / 2) ∈ ℕ0𝑄 ∈ ℤ) → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝑄) = (((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑄))
234231, 223, 216, 233syl3anc 1372 . . . . . . . . 9 (𝜑 → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝑄) = (((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑄))
235216zcnd 12725 . . . . . . . . . 10 (𝜑𝑄 ∈ ℂ)
236 cnfldexp 21418 . . . . . . . . . 10 ((𝑄 ∈ ℂ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝑄) = (𝑄↑((𝑃 − 1) / 2)))
237235, 223, 236syl2anc 584 . . . . . . . . 9 (𝜑 → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝑄) = (𝑄↑((𝑃 − 1) / 2)))
238234, 237eqtr3d 2778 . . . . . . . 8 (𝜑 → (((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑄) = (𝑄↑((𝑃 − 1) / 2)))
239238fveq2d 6909 . . . . . . 7 (𝜑 → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑄)) = (𝐿‘(𝑄↑((𝑃 − 1) / 2))))
240230, 239eqtr3d 2778 . . . . . 6 (𝜑 → (((𝑃 − 1) / 2)(.g𝐺)(𝐿𝑄)) = (𝐿‘(𝑄↑((𝑃 − 1) / 2))))
241220, 226, 2403eqtrd 2780 . . . . 5 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿𝑄))) = (𝐿‘(𝑄↑((𝑃 − 1) / 2))))
242206, 215, 2413eqtr3d 2784 . . . 4 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) = (𝐿‘(𝑄↑((𝑃 − 1) / 2))))
243 subrgsubg 20578 . . . . . . . . . 10 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubGrp‘ℂfld))
24451, 243ax-mp 5 . . . . . . . . 9 ℤ ∈ (SubGrp‘ℂfld)
245 subgsubm 19167 . . . . . . . . 9 (ℤ ∈ (SubGrp‘ℂfld) → ℤ ∈ (SubMnd‘ℂfld))
246244, 245mp1i 13 . . . . . . . 8 (𝜑 → ℤ ∈ (SubMnd‘ℂfld))
24776fmpttd 7134 . . . . . . . 8 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))):(1...((𝑃 − 1) / 2))⟶ℤ)
248 df-zring 21459 . . . . . . . 8 ring = (ℂflds ℤ)
24919, 246, 247, 248gsumsubm 18849 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = (ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
25076zcnd 12725 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℂ)
25119, 250gsumfsum 21453 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))
252249, 251eqtr3d 2778 . . . . . 6 (𝜑 → (ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))
253252oveq2d 7448 . . . . 5 (𝜑 → (-1↑(ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))
254253fveq2d 6909 . . . 4 (𝜑 → (𝐿‘(-1↑(ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) = (𝐿‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
25586, 242, 2543eqtr3d 2784 . . 3 (𝜑 → (𝐿‘(𝑄↑((𝑃 − 1) / 2))) = (𝐿‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
25666nnnn0d 12589 . . . 4 (𝜑𝑃 ∈ ℕ0)
257 zexpcl 14118 . . . . 5 ((𝑄 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝑄↑((𝑃 − 1) / 2)) ∈ ℤ)
258216, 223, 257syl2anc 584 . . . 4 (𝜑 → (𝑄↑((𝑃 − 1) / 2)) ∈ ℤ)
25919, 76fsumzcl 15772 . . . . 5 (𝜑 → Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ)
260 m1expcl 14128 . . . . 5 𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ)
261259, 260syl 17 . . . 4 (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ)
2628, 22zndvds 21569 . . . 4 ((𝑃 ∈ ℕ0 ∧ (𝑄↑((𝑃 − 1) / 2)) ∈ ℤ ∧ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ) → ((𝐿‘(𝑄↑((𝑃 − 1) / 2))) = (𝐿‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ↔ 𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) − (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
263256, 258, 261, 262syl3anc 1372 . . 3 (𝜑 → ((𝐿‘(𝑄↑((𝑃 − 1) / 2))) = (𝐿‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ↔ 𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) − (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
264255, 263mpbid 232 . 2 (𝜑𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) − (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))
265 moddvds 16302 . . 3 ((𝑃 ∈ ℕ ∧ (𝑄↑((𝑃 − 1) / 2)) ∈ ℤ ∧ (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ) → (((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃) ↔ 𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) − (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
26666, 258, 261, 265syl3anc 1372 . 2 (𝜑 → (((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃) ↔ 𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) − (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))
267264, 266mpbird 257 1 (𝜑 → ((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2939  Vcvv 3479  cdif 3947  wss 3950  {csn 4625   class class class wbr 5142  cmpt 5224  ran crn 5685  ccom 5688  wf 6556  cfv 6560  (class class class)co 7432  f cof 7696  Fincfn 8986  cc 11154  cr 11155  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161  cmin 11493  -cneg 11494   / cdiv 11921  cn 12267  2c2 12322  0cn0 12528  cz 12615  cuz 12879  +crp 13035  ...cfz 13548  cfl 13831   mod cmo 13910  cexp 14103  chash 14370  Σcsu 15723  cdvds 16291  cprime 16709  Basecbs 17248  s cress 17275  .rcmulr 17299  0gc0g 17485   Σg cgsu 17486  Mndcmnd 18748   MndHom cmhm 18795  SubMndcsubmnd 18796  .gcmg 19086  SubGrpcsubg 19139   GrpHom cghm 19231  CMndccmn 19799  Abelcabl 19800  mulGrpcmgp 20138  1rcur 20179  Ringcrg 20231  CRingccrg 20232   RingHom crh 20470  SubRingcsubrg 20570  DivRingcdr 20730  Fieldcfield 20731  fldccnfld 21365  ringczring 21458  ℤRHomczrh 21511  ℤ/nczn 21514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235  ax-mulf 11236
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-oadd 8511  df-er 8746  df-ec 8748  df-qs 8752  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-sup 9483  df-inf 9484  df-oi 9551  df-dju 9942  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-xnn0 12602  df-z 12616  df-dec 12736  df-uz 12880  df-rp 13036  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-sum 15724  df-dvds 16292  df-gcd 16533  df-prm 16710  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-0g 17487  df-gsum 17488  df-imas 17554  df-qus 17555  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-mulg 19087  df-subg 19142  df-nsg 19143  df-eqg 19144  df-ghm 19232  df-cntz 19336  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-cring 20234  df-oppr 20335  df-dvdsr 20358  df-unit 20359  df-invr 20389  df-dvr 20402  df-rhm 20473  df-nzr 20514  df-subrng 20547  df-subrg 20571  df-rlreg 20695  df-domn 20696  df-idom 20697  df-drng 20732  df-field 20733  df-lmod 20861  df-lss 20931  df-lsp 20971  df-sra 21173  df-rgmod 21174  df-lidl 21219  df-rsp 21220  df-2idl 21261  df-cnfld 21366  df-zring 21459  df-zrh 21515  df-zn 21518
This theorem is referenced by:  lgseisen  27424
  Copyright terms: Public domain W3C validator