![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zringbas | Structured version Visualization version GIF version |
Description: The integers are the base of the ring of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.) |
Ref | Expression |
---|---|
zringbas | ⊢ ℤ = (Base‘ℤring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zsscn 12568 | . 2 ⊢ ℤ ⊆ ℂ | |
2 | df-zring 21024 | . . 3 ⊢ ℤring = (ℂfld ↾s ℤ) | |
3 | cnfldbas 20954 | . . 3 ⊢ ℂ = (Base‘ℂfld) | |
4 | 2, 3 | ressbas2 17184 | . 2 ⊢ (ℤ ⊆ ℂ → ℤ = (Base‘ℤring)) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ ℤ = (Base‘ℤring) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ⊆ wss 3948 ‘cfv 6543 ℂcc 11110 ℤcz 12560 Basecbs 17146 ℂfldccnfld 20950 ℤringczring 21023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 df-sub 11448 df-neg 11449 df-nn 12215 df-2 12277 df-3 12278 df-4 12279 df-5 12280 df-6 12281 df-7 12282 df-8 12283 df-9 12284 df-n0 12475 df-z 12561 df-dec 12680 df-uz 12825 df-fz 13487 df-struct 17082 df-sets 17099 df-slot 17117 df-ndx 17129 df-base 17147 df-ress 17176 df-plusg 17212 df-mulr 17213 df-starv 17214 df-tset 17218 df-ple 17219 df-ds 17221 df-unif 17222 df-cnfld 20951 df-zring 21024 |
This theorem is referenced by: dvdsrzring 21037 zringlpirlem1 21038 zringlpirlem3 21040 zringinvg 21041 zringunit 21042 zringndrg 21044 zringcyg 21045 prmirredlem 21048 prmirred 21050 expghm 21051 mulgghm2 21052 mulgrhm 21053 mulgrhm2 21054 zlmlmod 21082 chrrhm 21089 domnchr 21090 znlidl 21091 znbas 21105 znzrh2 21107 znzrhfo 21109 zndvds 21111 znf1o 21113 zzngim 21114 znfld 21122 znidomb 21123 znunit 21125 znrrg 21127 cygznlem3 21131 frgpcyg 21135 zrhpsgnodpm 21151 zlmassa 21462 dchrzrhmul 26756 lgsqrlem1 26856 lgsqrlem2 26857 lgsqrlem3 26858 lgsdchr 26865 lgseisenlem3 26887 lgseisenlem4 26888 dchrisum0flblem1 27018 fermltlchr 32523 znfermltl 32524 elrspunidl 32591 ply1fermltlchr 32707 mdetpmtr1 32872 mdetpmtr12 32874 mdetlap 32881 nmmulg 33017 cnzh 33019 rezh 33020 zrhf1ker 33024 zrhunitpreima 33027 elzrhunit 33028 qqhval2lem 33030 qqhf 33035 qqhghm 33037 qqhrhm 33038 qqhnm 33039 mzpmfp 41567 pzriprnglem2 46885 pzriprnglem4 46887 pzriprnglem5 46888 pzriprnglem6 46889 pzriprnglem8 46891 pzriprnglem10 46893 pzriprnglem12 46895 pzriprng1ALT 46899 2zlidl 46911 zlmodzxzel 47110 zlmodzxzscm 47112 linevalexample 47154 zlmodzxzldeplem3 47261 zlmodzxzldep 47263 ldepsnlinclem1 47264 ldepsnlinclem2 47265 |
Copyright terms: Public domain | W3C validator |