Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zringbas | Structured version Visualization version GIF version |
Description: The integers are the base of the ring of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.) |
Ref | Expression |
---|---|
zringbas | ⊢ ℤ = (Base‘ℤring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zsscn 12021 | . 2 ⊢ ℤ ⊆ ℂ | |
2 | df-zring 20232 | . . 3 ⊢ ℤring = (ℂfld ↾s ℤ) | |
3 | cnfldbas 20163 | . . 3 ⊢ ℂ = (Base‘ℂfld) | |
4 | 2, 3 | ressbas2 16606 | . 2 ⊢ (ℤ ⊆ ℂ → ℤ = (Base‘ℤring)) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ ℤ = (Base‘ℤring) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊆ wss 3859 ‘cfv 6336 ℂcc 10566 ℤcz 12013 Basecbs 16534 ℂfldccnfld 20159 ℤringzring 20231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-oadd 8117 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-nn 11668 df-2 11730 df-3 11731 df-4 11732 df-5 11733 df-6 11734 df-7 11735 df-8 11736 df-9 11737 df-n0 11928 df-z 12014 df-dec 12131 df-uz 12276 df-fz 12933 df-struct 16536 df-ndx 16537 df-slot 16538 df-base 16540 df-sets 16541 df-ress 16542 df-plusg 16629 df-mulr 16630 df-starv 16631 df-tset 16635 df-ple 16636 df-ds 16638 df-unif 16639 df-cnfld 20160 df-zring 20232 |
This theorem is referenced by: dvdsrzring 20244 zringlpirlem1 20245 zringlpirlem3 20247 zringinvg 20248 zringunit 20249 zringndrg 20251 zringcyg 20252 prmirredlem 20255 prmirred 20257 expghm 20258 mulgghm2 20259 mulgrhm 20260 mulgrhm2 20261 zlmlmod 20285 chrrhm 20292 domnchr 20293 znlidl 20294 znbas 20304 znzrh2 20306 znzrhfo 20308 zndvds 20310 znf1o 20312 zzngim 20313 znfld 20321 znidomb 20322 znunit 20324 znrrg 20326 cygznlem3 20330 frgpcyg 20334 zrhpsgnodpm 20350 zlmassa 20658 dchrzrhmul 25922 lgsqrlem1 26022 lgsqrlem2 26023 lgsqrlem3 26024 lgsdchr 26031 lgseisenlem3 26053 lgseisenlem4 26054 dchrisum0flblem1 26184 znfermltl 31076 elrspunidl 31120 ply1fermltl 31184 mdetpmtr1 31287 mdetpmtr12 31289 mdetlap 31296 nmmulg 31430 cnzh 31432 rezh 31433 zrhf1ker 31437 zrhunitpreima 31440 elzrhunit 31441 qqhval2lem 31443 qqhf 31448 qqhghm 31450 qqhrhm 31451 qqhnm 31452 mzpmfp 40054 2zlidl 44918 zlmodzxzel 45117 zlmodzxzscm 45119 linevalexample 45162 zlmodzxzldeplem3 45269 zlmodzxzldep 45271 ldepsnlinclem1 45272 ldepsnlinclem2 45273 |
Copyright terms: Public domain | W3C validator |