Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zringbas | Structured version Visualization version GIF version |
Description: The integers are the base of the ring of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.) |
Ref | Expression |
---|---|
zringbas | ⊢ ℤ = (Base‘ℤring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zsscn 12257 | . 2 ⊢ ℤ ⊆ ℂ | |
2 | df-zring 20583 | . . 3 ⊢ ℤring = (ℂfld ↾s ℤ) | |
3 | cnfldbas 20514 | . . 3 ⊢ ℂ = (Base‘ℂfld) | |
4 | 2, 3 | ressbas2 16875 | . 2 ⊢ (ℤ ⊆ ℂ → ℤ = (Base‘ℤring)) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ ℤ = (Base‘ℤring) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊆ wss 3883 ‘cfv 6418 ℂcc 10800 ℤcz 12249 Basecbs 16840 ℂfldccnfld 20510 ℤringzring 20582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-cnfld 20511 df-zring 20583 |
This theorem is referenced by: dvdsrzring 20595 zringlpirlem1 20596 zringlpirlem3 20598 zringinvg 20599 zringunit 20600 zringndrg 20602 zringcyg 20603 prmirredlem 20606 prmirred 20608 expghm 20609 mulgghm2 20610 mulgrhm 20611 mulgrhm2 20612 zlmlmod 20640 chrrhm 20647 domnchr 20648 znlidl 20649 znbas 20663 znzrh2 20665 znzrhfo 20667 zndvds 20669 znf1o 20671 zzngim 20672 znfld 20680 znidomb 20681 znunit 20683 znrrg 20685 cygznlem3 20689 frgpcyg 20693 zrhpsgnodpm 20709 zlmassa 21016 dchrzrhmul 26299 lgsqrlem1 26399 lgsqrlem2 26400 lgsqrlem3 26401 lgsdchr 26408 lgseisenlem3 26430 lgseisenlem4 26431 dchrisum0flblem1 26561 znfermltl 31464 elrspunidl 31508 ply1fermltl 31572 mdetpmtr1 31675 mdetpmtr12 31677 mdetlap 31684 nmmulg 31818 cnzh 31820 rezh 31821 zrhf1ker 31825 zrhunitpreima 31828 elzrhunit 31829 qqhval2lem 31831 qqhf 31836 qqhghm 31838 qqhrhm 31839 qqhnm 31840 mzpmfp 40485 2zlidl 45380 zlmodzxzel 45579 zlmodzxzscm 45581 linevalexample 45624 zlmodzxzldeplem3 45731 zlmodzxzldep 45733 ldepsnlinclem1 45734 ldepsnlinclem2 45735 |
Copyright terms: Public domain | W3C validator |