![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zringbas | Structured version Visualization version GIF version |
Description: The integers are the base of the ring of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.) |
Ref | Expression |
---|---|
zringbas | ⊢ ℤ = (Base‘ℤring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zsscn 12606 | . 2 ⊢ ℤ ⊆ ℂ | |
2 | df-zring 21387 | . . 3 ⊢ ℤring = (ℂfld ↾s ℤ) | |
3 | cnfldbas 21297 | . . 3 ⊢ ℂ = (Base‘ℂfld) | |
4 | 2, 3 | ressbas2 17227 | . 2 ⊢ (ℤ ⊆ ℂ → ℤ = (Base‘ℤring)) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ ℤ = (Base‘ℤring) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ⊆ wss 3949 ‘cfv 6553 ℂcc 11146 ℤcz 12598 Basecbs 17189 ℂfldccnfld 21293 ℤringczring 21386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8001 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-er 8733 df-en 8973 df-dom 8974 df-sdom 8975 df-fin 8976 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-nn 12253 df-2 12315 df-3 12316 df-4 12317 df-5 12318 df-6 12319 df-7 12320 df-8 12321 df-9 12322 df-n0 12513 df-z 12599 df-dec 12718 df-uz 12863 df-fz 13527 df-struct 17125 df-sets 17142 df-slot 17160 df-ndx 17172 df-base 17190 df-ress 17219 df-plusg 17255 df-mulr 17256 df-starv 17257 df-tset 17261 df-ple 17262 df-ds 17264 df-unif 17265 df-cnfld 21294 df-zring 21387 |
This theorem is referenced by: dvdsrzring 21401 zringlpirlem1 21402 zringlpirlem3 21404 zringinvg 21405 zringunit 21406 zringndrg 21408 zringcyg 21409 prmirredlem 21412 prmirred 21414 expghm 21415 mulgghm2 21416 mulgrhm 21417 mulgrhm2 21418 pzriprnglem2 21422 pzriprnglem4 21424 pzriprnglem5 21425 pzriprnglem6 21426 pzriprnglem8 21428 pzriprnglem10 21430 pzriprnglem12 21432 pzriprng1ALT 21436 zlmlmod 21466 fermltlchr 21473 chrrhm 21475 domnchr 21476 znlidl 21477 znbas 21491 znzrh2 21493 znzrhfo 21495 zndvds 21497 znf1o 21499 zzngim 21500 znfld 21508 znidomb 21509 znunit 21511 znrrg 21513 cygznlem3 21517 frgpcyg 21521 zrhpsgnodpm 21538 zlmassa 21850 ply1fermltlchr 22250 dchrzrhmul 27207 lgsqrlem1 27307 lgsqrlem2 27308 lgsqrlem3 27309 lgsdchr 27316 lgseisenlem3 27338 lgseisenlem4 27339 dchrisum0flblem1 27469 znfermltl 33110 elrspunidl 33177 zringidom 33282 zringfrac 33285 mdetpmtr1 33465 mdetpmtr12 33467 mdetlap 33474 nmmulg 33610 cnzh 33612 rezh 33613 zrhf1ker 33617 zrhunitpreima 33620 elzrhunit 33621 qqhval2lem 33623 qqhf 33628 qqhghm 33630 qqhrhm 33631 qqhnm 33632 aks6d1c1p2 41620 aks6d1c1p3 41621 aks6d1c1 41627 hashscontpowcl 41631 hashscontpow 41633 aks6d1c4 41635 aks6d1c2 41641 aks6d1c5lem0 41646 aks6d1c5lem1 41647 aks6d1c5lem3 41648 aks6d1c5lem2 41649 aks6d1c5 41650 aks6d1c6lem1 41682 aks6d1c6lem3 41684 aks6d1c6isolem2 41687 aks6d1c6isolem3 41688 aks6d1c6lem5 41689 aks6d1c7lem1 41692 mzpmfp 42216 2zlidl 47398 zlmodzxzel 47515 zlmodzxzscm 47517 linevalexample 47559 zlmodzxzldeplem3 47666 zlmodzxzldep 47668 ldepsnlinclem1 47669 ldepsnlinclem2 47670 |
Copyright terms: Public domain | W3C validator |