![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zringbas | Structured version Visualization version GIF version |
Description: The integers are the base of the ring of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.) |
Ref | Expression |
---|---|
zringbas | ⊢ ℤ = (Base‘ℤring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zsscn 12570 | . 2 ⊢ ℤ ⊆ ℂ | |
2 | df-zring 21334 | . . 3 ⊢ ℤring = (ℂfld ↾s ℤ) | |
3 | cnfldbas 21244 | . . 3 ⊢ ℂ = (Base‘ℂfld) | |
4 | 2, 3 | ressbas2 17191 | . 2 ⊢ (ℤ ⊆ ℂ → ℤ = (Base‘ℤring)) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ ℤ = (Base‘ℤring) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ⊆ wss 3943 ‘cfv 6537 ℂcc 11110 ℤcz 12562 Basecbs 17153 ℂfldccnfld 21240 ℤringczring 21333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13491 df-struct 17089 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-starv 17221 df-tset 17225 df-ple 17226 df-ds 17228 df-unif 17229 df-cnfld 21241 df-zring 21334 |
This theorem is referenced by: dvdsrzring 21348 zringlpirlem1 21349 zringlpirlem3 21351 zringinvg 21352 zringunit 21353 zringndrg 21355 zringcyg 21356 prmirredlem 21359 prmirred 21361 expghm 21362 mulgghm2 21363 mulgrhm 21364 mulgrhm2 21365 pzriprnglem2 21369 pzriprnglem4 21371 pzriprnglem5 21372 pzriprnglem6 21373 pzriprnglem8 21375 pzriprnglem10 21377 pzriprnglem12 21379 pzriprng1ALT 21383 zlmlmod 21413 fermltlchr 21420 chrrhm 21422 domnchr 21423 znlidl 21424 znbas 21438 znzrh2 21440 znzrhfo 21442 zndvds 21444 znf1o 21446 zzngim 21447 znfld 21455 znidomb 21456 znunit 21458 znrrg 21460 cygznlem3 21464 frgpcyg 21468 zrhpsgnodpm 21485 zlmassa 21797 ply1fermltlchr 22186 dchrzrhmul 27134 lgsqrlem1 27234 lgsqrlem2 27235 lgsqrlem3 27236 lgsdchr 27243 lgseisenlem3 27265 lgseisenlem4 27266 dchrisum0flblem1 27396 znfermltl 32985 elrspunidl 33052 mdetpmtr1 33333 mdetpmtr12 33335 mdetlap 33342 nmmulg 33478 cnzh 33480 rezh 33481 zrhf1ker 33485 zrhunitpreima 33488 elzrhunit 33489 qqhval2lem 33491 qqhf 33496 qqhghm 33498 qqhrhm 33499 qqhnm 33500 aks6d1c1p2 41486 aks6d1c1p3 41487 aks6d1c1 41493 hashscontpowcl 41497 hashscontpow 41499 aks6d1c2 41506 aks6d1c5lem0 41511 aks6d1c5lem1 41512 aks6d1c5lem3 41513 aks6d1c5lem2 41514 aks6d1c5 41515 mzpmfp 42063 2zlidl 47190 zlmodzxzel 47307 zlmodzxzscm 47309 linevalexample 47351 zlmodzxzldeplem3 47458 zlmodzxzldep 47460 ldepsnlinclem1 47461 ldepsnlinclem2 47462 |
Copyright terms: Public domain | W3C validator |