MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zringlpirlem1 Structured version   Visualization version   GIF version

Theorem zringlpirlem1 20606
Description: Lemma for zringlpir 20611. A nonzero ideal of integers contains some positive integers. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.)
Hypotheses
Ref Expression
zringlpirlem.i (𝜑𝐼 ∈ (LIdeal‘ℤring))
zringlpirlem.n0 (𝜑𝐼 ≠ {0})
Assertion
Ref Expression
zringlpirlem1 (𝜑 → (𝐼 ∩ ℕ) ≠ ∅)

Proof of Theorem zringlpirlem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . . 6 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → 𝑎𝐼)
2 eleq1 2899 . . . . . 6 ((abs‘𝑎) = 𝑎 → ((abs‘𝑎) ∈ 𝐼𝑎𝐼))
31, 2syl5ibrcom 250 . . . . 5 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → ((abs‘𝑎) = 𝑎 → (abs‘𝑎) ∈ 𝐼))
4 zsubrg 20573 . . . . . . . . . . 11 ℤ ∈ (SubRing‘ℂfld)
5 subrgsubg 19516 . . . . . . . . . . 11 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubGrp‘ℂfld))
64, 5ax-mp 5 . . . . . . . . . 10 ℤ ∈ (SubGrp‘ℂfld)
7 zringlpirlem.i . . . . . . . . . . . 12 (𝜑𝐼 ∈ (LIdeal‘ℤring))
8 zringbas 20598 . . . . . . . . . . . . 13 ℤ = (Base‘ℤring)
9 eqid 2821 . . . . . . . . . . . . 13 (LIdeal‘ℤring) = (LIdeal‘ℤring)
108, 9lidlss 19958 . . . . . . . . . . . 12 (𝐼 ∈ (LIdeal‘ℤring) → 𝐼 ⊆ ℤ)
117, 10syl 17 . . . . . . . . . . 11 (𝜑𝐼 ⊆ ℤ)
1211sselda 3943 . . . . . . . . . 10 ((𝜑𝑎𝐼) → 𝑎 ∈ ℤ)
13 df-zring 20593 . . . . . . . . . . 11 ring = (ℂflds ℤ)
14 eqid 2821 . . . . . . . . . . 11 (invg‘ℂfld) = (invg‘ℂfld)
15 eqid 2821 . . . . . . . . . . 11 (invg‘ℤring) = (invg‘ℤring)
1613, 14, 15subginv 18264 . . . . . . . . . 10 ((ℤ ∈ (SubGrp‘ℂfld) ∧ 𝑎 ∈ ℤ) → ((invg‘ℂfld)‘𝑎) = ((invg‘ℤring)‘𝑎))
176, 12, 16sylancr 590 . . . . . . . . 9 ((𝜑𝑎𝐼) → ((invg‘ℂfld)‘𝑎) = ((invg‘ℤring)‘𝑎))
1812zcnd 12066 . . . . . . . . . 10 ((𝜑𝑎𝐼) → 𝑎 ∈ ℂ)
19 cnfldneg 20546 . . . . . . . . . 10 (𝑎 ∈ ℂ → ((invg‘ℂfld)‘𝑎) = -𝑎)
2018, 19syl 17 . . . . . . . . 9 ((𝜑𝑎𝐼) → ((invg‘ℂfld)‘𝑎) = -𝑎)
2117, 20eqtr3d 2858 . . . . . . . 8 ((𝜑𝑎𝐼) → ((invg‘ℤring)‘𝑎) = -𝑎)
22 zringring 20595 . . . . . . . . 9 ring ∈ Ring
237adantr 484 . . . . . . . . 9 ((𝜑𝑎𝐼) → 𝐼 ∈ (LIdeal‘ℤring))
24 simpr 488 . . . . . . . . 9 ((𝜑𝑎𝐼) → 𝑎𝐼)
259, 15lidlnegcl 19962 . . . . . . . . 9 ((ℤring ∈ Ring ∧ 𝐼 ∈ (LIdeal‘ℤring) ∧ 𝑎𝐼) → ((invg‘ℤring)‘𝑎) ∈ 𝐼)
2622, 23, 24, 25mp3an2i 1463 . . . . . . . 8 ((𝜑𝑎𝐼) → ((invg‘ℤring)‘𝑎) ∈ 𝐼)
2721, 26eqeltrrd 2913 . . . . . . 7 ((𝜑𝑎𝐼) → -𝑎𝐼)
2827adantr 484 . . . . . 6 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → -𝑎𝐼)
29 eleq1 2899 . . . . . 6 ((abs‘𝑎) = -𝑎 → ((abs‘𝑎) ∈ 𝐼 ↔ -𝑎𝐼))
3028, 29syl5ibrcom 250 . . . . 5 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → ((abs‘𝑎) = -𝑎 → (abs‘𝑎) ∈ 𝐼))
3112zred 12065 . . . . . . 7 ((𝜑𝑎𝐼) → 𝑎 ∈ ℝ)
3231absord 14754 . . . . . 6 ((𝜑𝑎𝐼) → ((abs‘𝑎) = 𝑎 ∨ (abs‘𝑎) = -𝑎))
3332adantr 484 . . . . 5 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → ((abs‘𝑎) = 𝑎 ∨ (abs‘𝑎) = -𝑎))
343, 30, 33mpjaod 857 . . . 4 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ 𝐼)
35 nnabscl 14664 . . . . 5 ((𝑎 ∈ ℤ ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ ℕ)
3612, 35sylan 583 . . . 4 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ ℕ)
3734, 36elind 4146 . . 3 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ (𝐼 ∩ ℕ))
3837ne0d 4274 . 2 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → (𝐼 ∩ ℕ) ≠ ∅)
39 zringlpirlem.n0 . . 3 (𝜑𝐼 ≠ {0})
40 zring0 20602 . . . 4 0 = (0g‘ℤring)
419, 40lidlnz 19976 . . 3 ((ℤring ∈ Ring ∧ 𝐼 ∈ (LIdeal‘ℤring) ∧ 𝐼 ≠ {0}) → ∃𝑎𝐼 𝑎 ≠ 0)
4222, 7, 39, 41mp3an2i 1463 . 2 (𝜑 → ∃𝑎𝐼 𝑎 ≠ 0)
4338, 42r19.29a 3275 1 (𝜑 → (𝐼 ∩ ℕ) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844   = wceq 1538  wcel 2115  wne 3007  wrex 3127  cin 3909  wss 3910  c0 4266  {csn 4540  cfv 6328  cc 10512  0cc0 10514  -cneg 10848  cn 11615  cz 11959  abscabs 14572  invgcminusg 18082  SubGrpcsubg 18251  Ringcrg 19275  SubRingcsubrg 19506  LIdealclidl 19917  fldccnfld 20520  ringzring 20592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592  ax-addf 10593  ax-mulf 10594
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-oadd 8081  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-sup 8882  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-7 11683  df-8 11684  df-9 11685  df-n0 11876  df-z 11960  df-dec 12077  df-uz 12222  df-rp 12368  df-fz 12876  df-seq 13353  df-exp 13414  df-cj 14437  df-re 14438  df-im 14439  df-sqrt 14573  df-abs 14574  df-struct 16463  df-ndx 16464  df-slot 16465  df-base 16467  df-sets 16468  df-ress 16469  df-plusg 16556  df-mulr 16557  df-starv 16558  df-sca 16559  df-vsca 16560  df-ip 16561  df-tset 16562  df-ple 16563  df-ds 16565  df-unif 16566  df-0g 16693  df-mgm 17830  df-sgrp 17879  df-mnd 17890  df-grp 18084  df-minusg 18085  df-sbg 18086  df-subg 18254  df-cmn 18886  df-mgp 19218  df-ur 19230  df-ring 19277  df-cring 19278  df-subrg 19508  df-lmod 19611  df-lss 19679  df-sra 19919  df-rgmod 19920  df-lidl 19921  df-cnfld 20521  df-zring 20593
This theorem is referenced by:  zringlpirlem2  20607  zringlpirlem3  20608
  Copyright terms: Public domain W3C validator