| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zringlpirlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for zringlpir 21426. A nonzero ideal of integers contains some positive integers. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) |
| Ref | Expression |
|---|---|
| zringlpirlem.i | ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘ℤring)) |
| zringlpirlem.n0 | ⊢ (𝜑 → 𝐼 ≠ {0}) |
| Ref | Expression |
|---|---|
| zringlpirlem1 | ⊢ (𝜑 → (𝐼 ∩ ℕ) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐼) ∧ 𝑎 ≠ 0) → 𝑎 ∈ 𝐼) | |
| 2 | eleq1 2822 | . . . . . 6 ⊢ ((abs‘𝑎) = 𝑎 → ((abs‘𝑎) ∈ 𝐼 ↔ 𝑎 ∈ 𝐼)) | |
| 3 | 1, 2 | syl5ibrcom 247 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐼) ∧ 𝑎 ≠ 0) → ((abs‘𝑎) = 𝑎 → (abs‘𝑎) ∈ 𝐼)) |
| 4 | zsubrg 21386 | . . . . . . . . . . 11 ⊢ ℤ ∈ (SubRing‘ℂfld) | |
| 5 | subrgsubg 20535 | . . . . . . . . . . 11 ⊢ (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubGrp‘ℂfld)) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . . . . . 10 ⊢ ℤ ∈ (SubGrp‘ℂfld) |
| 7 | zringlpirlem.i | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘ℤring)) | |
| 8 | zringbas 21412 | . . . . . . . . . . . . 13 ⊢ ℤ = (Base‘ℤring) | |
| 9 | eqid 2735 | . . . . . . . . . . . . 13 ⊢ (LIdeal‘ℤring) = (LIdeal‘ℤring) | |
| 10 | 8, 9 | lidlss 21171 | . . . . . . . . . . . 12 ⊢ (𝐼 ∈ (LIdeal‘ℤring) → 𝐼 ⊆ ℤ) |
| 11 | 7, 10 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐼 ⊆ ℤ) |
| 12 | 11 | sselda 3958 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → 𝑎 ∈ ℤ) |
| 13 | df-zring 21406 | . . . . . . . . . . 11 ⊢ ℤring = (ℂfld ↾s ℤ) | |
| 14 | eqid 2735 | . . . . . . . . . . 11 ⊢ (invg‘ℂfld) = (invg‘ℂfld) | |
| 15 | eqid 2735 | . . . . . . . . . . 11 ⊢ (invg‘ℤring) = (invg‘ℤring) | |
| 16 | 13, 14, 15 | subginv 19114 | . . . . . . . . . 10 ⊢ ((ℤ ∈ (SubGrp‘ℂfld) ∧ 𝑎 ∈ ℤ) → ((invg‘ℂfld)‘𝑎) = ((invg‘ℤring)‘𝑎)) |
| 17 | 6, 12, 16 | sylancr 587 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ((invg‘ℂfld)‘𝑎) = ((invg‘ℤring)‘𝑎)) |
| 18 | 12 | zcnd 12696 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → 𝑎 ∈ ℂ) |
| 19 | cnfldneg 21356 | . . . . . . . . . 10 ⊢ (𝑎 ∈ ℂ → ((invg‘ℂfld)‘𝑎) = -𝑎) | |
| 20 | 18, 19 | syl 17 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ((invg‘ℂfld)‘𝑎) = -𝑎) |
| 21 | 17, 20 | eqtr3d 2772 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ((invg‘ℤring)‘𝑎) = -𝑎) |
| 22 | zringring 21408 | . . . . . . . . 9 ⊢ ℤring ∈ Ring | |
| 23 | 7 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → 𝐼 ∈ (LIdeal‘ℤring)) |
| 24 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → 𝑎 ∈ 𝐼) | |
| 25 | 9, 15 | lidlnegcl 21181 | . . . . . . . . 9 ⊢ ((ℤring ∈ Ring ∧ 𝐼 ∈ (LIdeal‘ℤring) ∧ 𝑎 ∈ 𝐼) → ((invg‘ℤring)‘𝑎) ∈ 𝐼) |
| 26 | 22, 23, 24, 25 | mp3an2i 1468 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ((invg‘ℤring)‘𝑎) ∈ 𝐼) |
| 27 | 21, 26 | eqeltrrd 2835 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → -𝑎 ∈ 𝐼) |
| 28 | 27 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐼) ∧ 𝑎 ≠ 0) → -𝑎 ∈ 𝐼) |
| 29 | eleq1 2822 | . . . . . 6 ⊢ ((abs‘𝑎) = -𝑎 → ((abs‘𝑎) ∈ 𝐼 ↔ -𝑎 ∈ 𝐼)) | |
| 30 | 28, 29 | syl5ibrcom 247 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐼) ∧ 𝑎 ≠ 0) → ((abs‘𝑎) = -𝑎 → (abs‘𝑎) ∈ 𝐼)) |
| 31 | 12 | zred 12695 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → 𝑎 ∈ ℝ) |
| 32 | 31 | absord 15432 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ((abs‘𝑎) = 𝑎 ∨ (abs‘𝑎) = -𝑎)) |
| 33 | 32 | adantr 480 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐼) ∧ 𝑎 ≠ 0) → ((abs‘𝑎) = 𝑎 ∨ (abs‘𝑎) = -𝑎)) |
| 34 | 3, 30, 33 | mpjaod 860 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐼) ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ 𝐼) |
| 35 | nnabscl 15342 | . . . . 5 ⊢ ((𝑎 ∈ ℤ ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ ℕ) | |
| 36 | 12, 35 | sylan 580 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐼) ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ ℕ) |
| 37 | 34, 36 | elind 4175 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐼) ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ (𝐼 ∩ ℕ)) |
| 38 | 37 | ne0d 4317 | . 2 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐼) ∧ 𝑎 ≠ 0) → (𝐼 ∩ ℕ) ≠ ∅) |
| 39 | zringlpirlem.n0 | . . 3 ⊢ (𝜑 → 𝐼 ≠ {0}) | |
| 40 | zring0 21417 | . . . 4 ⊢ 0 = (0g‘ℤring) | |
| 41 | 9, 40 | lidlnz 21201 | . . 3 ⊢ ((ℤring ∈ Ring ∧ 𝐼 ∈ (LIdeal‘ℤring) ∧ 𝐼 ≠ {0}) → ∃𝑎 ∈ 𝐼 𝑎 ≠ 0) |
| 42 | 22, 7, 39, 41 | mp3an2i 1468 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ 𝐼 𝑎 ≠ 0) |
| 43 | 38, 42 | r19.29a 3148 | 1 ⊢ (𝜑 → (𝐼 ∩ ℕ) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∃wrex 3060 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 {csn 4601 ‘cfv 6530 ℂcc 11125 0cc0 11127 -cneg 11465 ℕcn 12238 ℤcz 12586 abscabs 15251 invgcminusg 18915 SubGrpcsubg 19101 Ringcrg 20191 SubRingcsubrg 20527 LIdealclidl 21165 ℂfldccnfld 21313 ℤringczring 21405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 ax-addf 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9452 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-rp 13007 df-fz 13523 df-seq 14018 df-exp 14078 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-starv 17284 df-sca 17285 df-vsca 17286 df-ip 17287 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-0g 17453 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-grp 18917 df-minusg 18918 df-sbg 18919 df-subg 19104 df-cmn 19761 df-abl 19762 df-mgp 20099 df-rng 20111 df-ur 20140 df-ring 20193 df-cring 20194 df-subrng 20504 df-subrg 20528 df-lmod 20817 df-lss 20887 df-sra 21129 df-rgmod 21130 df-lidl 21167 df-cnfld 21314 df-zring 21406 |
| This theorem is referenced by: zringlpirlem2 21422 zringlpirlem3 21423 |
| Copyright terms: Public domain | W3C validator |