Step | Hyp | Ref
| Expression |
1 | | simplr 766 |
. . . . . 6
β’ (((π β§ π β πΌ) β§ π β 0) β π β πΌ) |
2 | | eleq1 2820 |
. . . . . 6
β’
((absβπ) =
π β ((absβπ) β πΌ β π β πΌ)) |
3 | 1, 2 | syl5ibrcom 246 |
. . . . 5
β’ (((π β§ π β πΌ) β§ π β 0) β ((absβπ) = π β (absβπ) β πΌ)) |
4 | | zsubrg 21199 |
. . . . . . . . . . 11
β’ β€
β (SubRingββfld) |
5 | | subrgsubg 20468 |
. . . . . . . . . . 11
β’ (β€
β (SubRingββfld) β β€ β
(SubGrpββfld)) |
6 | 4, 5 | ax-mp 5 |
. . . . . . . . . 10
β’ β€
β (SubGrpββfld) |
7 | | zringlpirlem.i |
. . . . . . . . . . . 12
β’ (π β πΌ β
(LIdealββ€ring)) |
8 | | zringbas 21225 |
. . . . . . . . . . . . 13
β’ β€ =
(Baseββ€ring) |
9 | | eqid 2731 |
. . . . . . . . . . . . 13
β’
(LIdealββ€ring) =
(LIdealββ€ring) |
10 | 8, 9 | lidlss 20979 |
. . . . . . . . . . . 12
β’ (πΌ β
(LIdealββ€ring) β πΌ β β€) |
11 | 7, 10 | syl 17 |
. . . . . . . . . . 11
β’ (π β πΌ β β€) |
12 | 11 | sselda 3982 |
. . . . . . . . . 10
β’ ((π β§ π β πΌ) β π β β€) |
13 | | df-zring 21219 |
. . . . . . . . . . 11
β’
β€ring = (βfld βΎs
β€) |
14 | | eqid 2731 |
. . . . . . . . . . 11
β’
(invgββfld) =
(invgββfld) |
15 | | eqid 2731 |
. . . . . . . . . . 11
β’
(invgββ€ring) =
(invgββ€ring) |
16 | 13, 14, 15 | subginv 19050 |
. . . . . . . . . 10
β’ ((β€
β (SubGrpββfld) β§ π β β€) β
((invgββfld)βπ) =
((invgββ€ring)βπ)) |
17 | 6, 12, 16 | sylancr 586 |
. . . . . . . . 9
β’ ((π β§ π β πΌ) β
((invgββfld)βπ) =
((invgββ€ring)βπ)) |
18 | 12 | zcnd 12672 |
. . . . . . . . . 10
β’ ((π β§ π β πΌ) β π β β) |
19 | | cnfldneg 21172 |
. . . . . . . . . 10
β’ (π β β β
((invgββfld)βπ) = -π) |
20 | 18, 19 | syl 17 |
. . . . . . . . 9
β’ ((π β§ π β πΌ) β
((invgββfld)βπ) = -π) |
21 | 17, 20 | eqtr3d 2773 |
. . . . . . . 8
β’ ((π β§ π β πΌ) β
((invgββ€ring)βπ) = -π) |
22 | | zringring 21221 |
. . . . . . . . 9
β’
β€ring β Ring |
23 | 7 | adantr 480 |
. . . . . . . . 9
β’ ((π β§ π β πΌ) β πΌ β
(LIdealββ€ring)) |
24 | | simpr 484 |
. . . . . . . . 9
β’ ((π β§ π β πΌ) β π β πΌ) |
25 | 9, 15 | lidlnegcl 20987 |
. . . . . . . . 9
β’
((β€ring β Ring β§ πΌ β
(LIdealββ€ring) β§ π β πΌ) β
((invgββ€ring)βπ) β πΌ) |
26 | 22, 23, 24, 25 | mp3an2i 1465 |
. . . . . . . 8
β’ ((π β§ π β πΌ) β
((invgββ€ring)βπ) β πΌ) |
27 | 21, 26 | eqeltrrd 2833 |
. . . . . . 7
β’ ((π β§ π β πΌ) β -π β πΌ) |
28 | 27 | adantr 480 |
. . . . . 6
β’ (((π β§ π β πΌ) β§ π β 0) β -π β πΌ) |
29 | | eleq1 2820 |
. . . . . 6
β’
((absβπ) =
-π β ((absβπ) β πΌ β -π β πΌ)) |
30 | 28, 29 | syl5ibrcom 246 |
. . . . 5
β’ (((π β§ π β πΌ) β§ π β 0) β ((absβπ) = -π β (absβπ) β πΌ)) |
31 | 12 | zred 12671 |
. . . . . . 7
β’ ((π β§ π β πΌ) β π β β) |
32 | 31 | absord 15367 |
. . . . . 6
β’ ((π β§ π β πΌ) β ((absβπ) = π β¨ (absβπ) = -π)) |
33 | 32 | adantr 480 |
. . . . 5
β’ (((π β§ π β πΌ) β§ π β 0) β ((absβπ) = π β¨ (absβπ) = -π)) |
34 | 3, 30, 33 | mpjaod 857 |
. . . 4
β’ (((π β§ π β πΌ) β§ π β 0) β (absβπ) β πΌ) |
35 | | nnabscl 15277 |
. . . . 5
β’ ((π β β€ β§ π β 0) β (absβπ) β
β) |
36 | 12, 35 | sylan 579 |
. . . 4
β’ (((π β§ π β πΌ) β§ π β 0) β (absβπ) β β) |
37 | 34, 36 | elind 4194 |
. . 3
β’ (((π β§ π β πΌ) β§ π β 0) β (absβπ) β (πΌ β© β)) |
38 | 37 | ne0d 4335 |
. 2
β’ (((π β§ π β πΌ) β§ π β 0) β (πΌ β© β) β
β
) |
39 | | zringlpirlem.n0 |
. . 3
β’ (π β πΌ β {0}) |
40 | | zring0 21230 |
. . . 4
β’ 0 =
(0gββ€ring) |
41 | 9, 40 | lidlnz 21003 |
. . 3
β’
((β€ring β Ring β§ πΌ β
(LIdealββ€ring) β§ πΌ β {0}) β βπ β πΌ π β 0) |
42 | 22, 7, 39, 41 | mp3an2i 1465 |
. 2
β’ (π β βπ β πΌ π β 0) |
43 | 38, 42 | r19.29a 3161 |
1
β’ (π β (πΌ β© β) β
β
) |