MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zringlpirlem1 Structured version   Visualization version   GIF version

Theorem zringlpirlem1 20684
Description: Lemma for zringlpir 20689. A nonzero ideal of integers contains some positive integers. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.)
Hypotheses
Ref Expression
zringlpirlem.i (𝜑𝐼 ∈ (LIdeal‘ℤring))
zringlpirlem.n0 (𝜑𝐼 ≠ {0})
Assertion
Ref Expression
zringlpirlem1 (𝜑 → (𝐼 ∩ ℕ) ≠ ∅)

Proof of Theorem zringlpirlem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simplr 766 . . . . . 6 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → 𝑎𝐼)
2 eleq1 2826 . . . . . 6 ((abs‘𝑎) = 𝑎 → ((abs‘𝑎) ∈ 𝐼𝑎𝐼))
31, 2syl5ibrcom 246 . . . . 5 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → ((abs‘𝑎) = 𝑎 → (abs‘𝑎) ∈ 𝐼))
4 zsubrg 20651 . . . . . . . . . . 11 ℤ ∈ (SubRing‘ℂfld)
5 subrgsubg 20030 . . . . . . . . . . 11 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubGrp‘ℂfld))
64, 5ax-mp 5 . . . . . . . . . 10 ℤ ∈ (SubGrp‘ℂfld)
7 zringlpirlem.i . . . . . . . . . . . 12 (𝜑𝐼 ∈ (LIdeal‘ℤring))
8 zringbas 20676 . . . . . . . . . . . . 13 ℤ = (Base‘ℤring)
9 eqid 2738 . . . . . . . . . . . . 13 (LIdeal‘ℤring) = (LIdeal‘ℤring)
108, 9lidlss 20481 . . . . . . . . . . . 12 (𝐼 ∈ (LIdeal‘ℤring) → 𝐼 ⊆ ℤ)
117, 10syl 17 . . . . . . . . . . 11 (𝜑𝐼 ⊆ ℤ)
1211sselda 3921 . . . . . . . . . 10 ((𝜑𝑎𝐼) → 𝑎 ∈ ℤ)
13 df-zring 20671 . . . . . . . . . . 11 ring = (ℂflds ℤ)
14 eqid 2738 . . . . . . . . . . 11 (invg‘ℂfld) = (invg‘ℂfld)
15 eqid 2738 . . . . . . . . . . 11 (invg‘ℤring) = (invg‘ℤring)
1613, 14, 15subginv 18762 . . . . . . . . . 10 ((ℤ ∈ (SubGrp‘ℂfld) ∧ 𝑎 ∈ ℤ) → ((invg‘ℂfld)‘𝑎) = ((invg‘ℤring)‘𝑎))
176, 12, 16sylancr 587 . . . . . . . . 9 ((𝜑𝑎𝐼) → ((invg‘ℂfld)‘𝑎) = ((invg‘ℤring)‘𝑎))
1812zcnd 12427 . . . . . . . . . 10 ((𝜑𝑎𝐼) → 𝑎 ∈ ℂ)
19 cnfldneg 20624 . . . . . . . . . 10 (𝑎 ∈ ℂ → ((invg‘ℂfld)‘𝑎) = -𝑎)
2018, 19syl 17 . . . . . . . . 9 ((𝜑𝑎𝐼) → ((invg‘ℂfld)‘𝑎) = -𝑎)
2117, 20eqtr3d 2780 . . . . . . . 8 ((𝜑𝑎𝐼) → ((invg‘ℤring)‘𝑎) = -𝑎)
22 zringring 20673 . . . . . . . . 9 ring ∈ Ring
237adantr 481 . . . . . . . . 9 ((𝜑𝑎𝐼) → 𝐼 ∈ (LIdeal‘ℤring))
24 simpr 485 . . . . . . . . 9 ((𝜑𝑎𝐼) → 𝑎𝐼)
259, 15lidlnegcl 20485 . . . . . . . . 9 ((ℤring ∈ Ring ∧ 𝐼 ∈ (LIdeal‘ℤring) ∧ 𝑎𝐼) → ((invg‘ℤring)‘𝑎) ∈ 𝐼)
2622, 23, 24, 25mp3an2i 1465 . . . . . . . 8 ((𝜑𝑎𝐼) → ((invg‘ℤring)‘𝑎) ∈ 𝐼)
2721, 26eqeltrrd 2840 . . . . . . 7 ((𝜑𝑎𝐼) → -𝑎𝐼)
2827adantr 481 . . . . . 6 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → -𝑎𝐼)
29 eleq1 2826 . . . . . 6 ((abs‘𝑎) = -𝑎 → ((abs‘𝑎) ∈ 𝐼 ↔ -𝑎𝐼))
3028, 29syl5ibrcom 246 . . . . 5 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → ((abs‘𝑎) = -𝑎 → (abs‘𝑎) ∈ 𝐼))
3112zred 12426 . . . . . . 7 ((𝜑𝑎𝐼) → 𝑎 ∈ ℝ)
3231absord 15127 . . . . . 6 ((𝜑𝑎𝐼) → ((abs‘𝑎) = 𝑎 ∨ (abs‘𝑎) = -𝑎))
3332adantr 481 . . . . 5 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → ((abs‘𝑎) = 𝑎 ∨ (abs‘𝑎) = -𝑎))
343, 30, 33mpjaod 857 . . . 4 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ 𝐼)
35 nnabscl 15037 . . . . 5 ((𝑎 ∈ ℤ ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ ℕ)
3612, 35sylan 580 . . . 4 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ ℕ)
3734, 36elind 4128 . . 3 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ (𝐼 ∩ ℕ))
3837ne0d 4269 . 2 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → (𝐼 ∩ ℕ) ≠ ∅)
39 zringlpirlem.n0 . . 3 (𝜑𝐼 ≠ {0})
40 zring0 20680 . . . 4 0 = (0g‘ℤring)
419, 40lidlnz 20499 . . 3 ((ℤring ∈ Ring ∧ 𝐼 ∈ (LIdeal‘ℤring) ∧ 𝐼 ≠ {0}) → ∃𝑎𝐼 𝑎 ≠ 0)
4222, 7, 39, 41mp3an2i 1465 . 2 (𝜑 → ∃𝑎𝐼 𝑎 ≠ 0)
4338, 42r19.29a 3218 1 (𝜑 → (𝐼 ∩ ℕ) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  wrex 3065  cin 3886  wss 3887  c0 4256  {csn 4561  cfv 6433  cc 10869  0cc0 10871  -cneg 11206  cn 11973  cz 12319  abscabs 14945  invgcminusg 18578  SubGrpcsubg 18749  Ringcrg 19783  SubRingcsubrg 20020  LIdealclidl 20432  fldccnfld 20597  ringczring 20670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-fz 13240  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-cmn 19388  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-subrg 20022  df-lmod 20125  df-lss 20194  df-sra 20434  df-rgmod 20435  df-lidl 20436  df-cnfld 20598  df-zring 20671
This theorem is referenced by:  zringlpirlem2  20685  zringlpirlem3  20686
  Copyright terms: Public domain W3C validator