| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zringlpirlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for zringlpir 21409. A nonzero ideal of integers contains some positive integers. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) |
| Ref | Expression |
|---|---|
| zringlpirlem.i | ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘ℤring)) |
| zringlpirlem.n0 | ⊢ (𝜑 → 𝐼 ≠ {0}) |
| Ref | Expression |
|---|---|
| zringlpirlem1 | ⊢ (𝜑 → (𝐼 ∩ ℕ) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐼) ∧ 𝑎 ≠ 0) → 𝑎 ∈ 𝐼) | |
| 2 | eleq1 2816 | . . . . . 6 ⊢ ((abs‘𝑎) = 𝑎 → ((abs‘𝑎) ∈ 𝐼 ↔ 𝑎 ∈ 𝐼)) | |
| 3 | 1, 2 | syl5ibrcom 247 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐼) ∧ 𝑎 ≠ 0) → ((abs‘𝑎) = 𝑎 → (abs‘𝑎) ∈ 𝐼)) |
| 4 | zsubrg 21362 | . . . . . . . . . . 11 ⊢ ℤ ∈ (SubRing‘ℂfld) | |
| 5 | subrgsubg 20497 | . . . . . . . . . . 11 ⊢ (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubGrp‘ℂfld)) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . . . . . 10 ⊢ ℤ ∈ (SubGrp‘ℂfld) |
| 7 | zringlpirlem.i | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘ℤring)) | |
| 8 | zringbas 21395 | . . . . . . . . . . . . 13 ⊢ ℤ = (Base‘ℤring) | |
| 9 | eqid 2729 | . . . . . . . . . . . . 13 ⊢ (LIdeal‘ℤring) = (LIdeal‘ℤring) | |
| 10 | 8, 9 | lidlss 21154 | . . . . . . . . . . . 12 ⊢ (𝐼 ∈ (LIdeal‘ℤring) → 𝐼 ⊆ ℤ) |
| 11 | 7, 10 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐼 ⊆ ℤ) |
| 12 | 11 | sselda 3943 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → 𝑎 ∈ ℤ) |
| 13 | df-zring 21389 | . . . . . . . . . . 11 ⊢ ℤring = (ℂfld ↾s ℤ) | |
| 14 | eqid 2729 | . . . . . . . . . . 11 ⊢ (invg‘ℂfld) = (invg‘ℂfld) | |
| 15 | eqid 2729 | . . . . . . . . . . 11 ⊢ (invg‘ℤring) = (invg‘ℤring) | |
| 16 | 13, 14, 15 | subginv 19047 | . . . . . . . . . 10 ⊢ ((ℤ ∈ (SubGrp‘ℂfld) ∧ 𝑎 ∈ ℤ) → ((invg‘ℂfld)‘𝑎) = ((invg‘ℤring)‘𝑎)) |
| 17 | 6, 12, 16 | sylancr 587 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ((invg‘ℂfld)‘𝑎) = ((invg‘ℤring)‘𝑎)) |
| 18 | 12 | zcnd 12615 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → 𝑎 ∈ ℂ) |
| 19 | cnfldneg 21337 | . . . . . . . . . 10 ⊢ (𝑎 ∈ ℂ → ((invg‘ℂfld)‘𝑎) = -𝑎) | |
| 20 | 18, 19 | syl 17 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ((invg‘ℂfld)‘𝑎) = -𝑎) |
| 21 | 17, 20 | eqtr3d 2766 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ((invg‘ℤring)‘𝑎) = -𝑎) |
| 22 | zringring 21391 | . . . . . . . . 9 ⊢ ℤring ∈ Ring | |
| 23 | 7 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → 𝐼 ∈ (LIdeal‘ℤring)) |
| 24 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → 𝑎 ∈ 𝐼) | |
| 25 | 9, 15 | lidlnegcl 21164 | . . . . . . . . 9 ⊢ ((ℤring ∈ Ring ∧ 𝐼 ∈ (LIdeal‘ℤring) ∧ 𝑎 ∈ 𝐼) → ((invg‘ℤring)‘𝑎) ∈ 𝐼) |
| 26 | 22, 23, 24, 25 | mp3an2i 1468 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ((invg‘ℤring)‘𝑎) ∈ 𝐼) |
| 27 | 21, 26 | eqeltrrd 2829 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → -𝑎 ∈ 𝐼) |
| 28 | 27 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐼) ∧ 𝑎 ≠ 0) → -𝑎 ∈ 𝐼) |
| 29 | eleq1 2816 | . . . . . 6 ⊢ ((abs‘𝑎) = -𝑎 → ((abs‘𝑎) ∈ 𝐼 ↔ -𝑎 ∈ 𝐼)) | |
| 30 | 28, 29 | syl5ibrcom 247 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐼) ∧ 𝑎 ≠ 0) → ((abs‘𝑎) = -𝑎 → (abs‘𝑎) ∈ 𝐼)) |
| 31 | 12 | zred 12614 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → 𝑎 ∈ ℝ) |
| 32 | 31 | absord 15358 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ((abs‘𝑎) = 𝑎 ∨ (abs‘𝑎) = -𝑎)) |
| 33 | 32 | adantr 480 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐼) ∧ 𝑎 ≠ 0) → ((abs‘𝑎) = 𝑎 ∨ (abs‘𝑎) = -𝑎)) |
| 34 | 3, 30, 33 | mpjaod 860 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐼) ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ 𝐼) |
| 35 | nnabscl 15268 | . . . . 5 ⊢ ((𝑎 ∈ ℤ ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ ℕ) | |
| 36 | 12, 35 | sylan 580 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐼) ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ ℕ) |
| 37 | 34, 36 | elind 4159 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐼) ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ (𝐼 ∩ ℕ)) |
| 38 | 37 | ne0d 4301 | . 2 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐼) ∧ 𝑎 ≠ 0) → (𝐼 ∩ ℕ) ≠ ∅) |
| 39 | zringlpirlem.n0 | . . 3 ⊢ (𝜑 → 𝐼 ≠ {0}) | |
| 40 | zring0 21400 | . . . 4 ⊢ 0 = (0g‘ℤring) | |
| 41 | 9, 40 | lidlnz 21184 | . . 3 ⊢ ((ℤring ∈ Ring ∧ 𝐼 ∈ (LIdeal‘ℤring) ∧ 𝐼 ≠ {0}) → ∃𝑎 ∈ 𝐼 𝑎 ≠ 0) |
| 42 | 22, 7, 39, 41 | mp3an2i 1468 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ 𝐼 𝑎 ≠ 0) |
| 43 | 38, 42 | r19.29a 3141 | 1 ⊢ (𝜑 → (𝐼 ∩ ℕ) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ∩ cin 3910 ⊆ wss 3911 ∅c0 4292 {csn 4585 ‘cfv 6499 ℂcc 11042 0cc0 11044 -cneg 11382 ℕcn 12162 ℤcz 12505 abscabs 15176 invgcminusg 18848 SubGrpcsubg 19034 Ringcrg 20153 SubRingcsubrg 20489 LIdealclidl 21148 ℂfldccnfld 21296 ℤringczring 21388 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-rp 12928 df-fz 13445 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17380 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-grp 18850 df-minusg 18851 df-sbg 18852 df-subg 19037 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-subrng 20466 df-subrg 20490 df-lmod 20800 df-lss 20870 df-sra 21112 df-rgmod 21113 df-lidl 21150 df-cnfld 21297 df-zring 21389 |
| This theorem is referenced by: zringlpirlem2 21405 zringlpirlem3 21406 |
| Copyright terms: Public domain | W3C validator |