MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zringlpirlem1 Structured version   Visualization version   GIF version

Theorem zringlpirlem1 21496
Description: Lemma for zringlpir 21501. A nonzero ideal of integers contains some positive integers. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.)
Hypotheses
Ref Expression
zringlpirlem.i (𝜑𝐼 ∈ (LIdeal‘ℤring))
zringlpirlem.n0 (𝜑𝐼 ≠ {0})
Assertion
Ref Expression
zringlpirlem1 (𝜑 → (𝐼 ∩ ℕ) ≠ ∅)

Proof of Theorem zringlpirlem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . . 6 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → 𝑎𝐼)
2 eleq1 2832 . . . . . 6 ((abs‘𝑎) = 𝑎 → ((abs‘𝑎) ∈ 𝐼𝑎𝐼))
31, 2syl5ibrcom 247 . . . . 5 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → ((abs‘𝑎) = 𝑎 → (abs‘𝑎) ∈ 𝐼))
4 zsubrg 21461 . . . . . . . . . . 11 ℤ ∈ (SubRing‘ℂfld)
5 subrgsubg 20605 . . . . . . . . . . 11 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubGrp‘ℂfld))
64, 5ax-mp 5 . . . . . . . . . 10 ℤ ∈ (SubGrp‘ℂfld)
7 zringlpirlem.i . . . . . . . . . . . 12 (𝜑𝐼 ∈ (LIdeal‘ℤring))
8 zringbas 21487 . . . . . . . . . . . . 13 ℤ = (Base‘ℤring)
9 eqid 2740 . . . . . . . . . . . . 13 (LIdeal‘ℤring) = (LIdeal‘ℤring)
108, 9lidlss 21245 . . . . . . . . . . . 12 (𝐼 ∈ (LIdeal‘ℤring) → 𝐼 ⊆ ℤ)
117, 10syl 17 . . . . . . . . . . 11 (𝜑𝐼 ⊆ ℤ)
1211sselda 4008 . . . . . . . . . 10 ((𝜑𝑎𝐼) → 𝑎 ∈ ℤ)
13 df-zring 21481 . . . . . . . . . . 11 ring = (ℂflds ℤ)
14 eqid 2740 . . . . . . . . . . 11 (invg‘ℂfld) = (invg‘ℂfld)
15 eqid 2740 . . . . . . . . . . 11 (invg‘ℤring) = (invg‘ℤring)
1613, 14, 15subginv 19173 . . . . . . . . . 10 ((ℤ ∈ (SubGrp‘ℂfld) ∧ 𝑎 ∈ ℤ) → ((invg‘ℂfld)‘𝑎) = ((invg‘ℤring)‘𝑎))
176, 12, 16sylancr 586 . . . . . . . . 9 ((𝜑𝑎𝐼) → ((invg‘ℂfld)‘𝑎) = ((invg‘ℤring)‘𝑎))
1812zcnd 12748 . . . . . . . . . 10 ((𝜑𝑎𝐼) → 𝑎 ∈ ℂ)
19 cnfldneg 21431 . . . . . . . . . 10 (𝑎 ∈ ℂ → ((invg‘ℂfld)‘𝑎) = -𝑎)
2018, 19syl 17 . . . . . . . . 9 ((𝜑𝑎𝐼) → ((invg‘ℂfld)‘𝑎) = -𝑎)
2117, 20eqtr3d 2782 . . . . . . . 8 ((𝜑𝑎𝐼) → ((invg‘ℤring)‘𝑎) = -𝑎)
22 zringring 21483 . . . . . . . . 9 ring ∈ Ring
237adantr 480 . . . . . . . . 9 ((𝜑𝑎𝐼) → 𝐼 ∈ (LIdeal‘ℤring))
24 simpr 484 . . . . . . . . 9 ((𝜑𝑎𝐼) → 𝑎𝐼)
259, 15lidlnegcl 21255 . . . . . . . . 9 ((ℤring ∈ Ring ∧ 𝐼 ∈ (LIdeal‘ℤring) ∧ 𝑎𝐼) → ((invg‘ℤring)‘𝑎) ∈ 𝐼)
2622, 23, 24, 25mp3an2i 1466 . . . . . . . 8 ((𝜑𝑎𝐼) → ((invg‘ℤring)‘𝑎) ∈ 𝐼)
2721, 26eqeltrrd 2845 . . . . . . 7 ((𝜑𝑎𝐼) → -𝑎𝐼)
2827adantr 480 . . . . . 6 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → -𝑎𝐼)
29 eleq1 2832 . . . . . 6 ((abs‘𝑎) = -𝑎 → ((abs‘𝑎) ∈ 𝐼 ↔ -𝑎𝐼))
3028, 29syl5ibrcom 247 . . . . 5 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → ((abs‘𝑎) = -𝑎 → (abs‘𝑎) ∈ 𝐼))
3112zred 12747 . . . . . . 7 ((𝜑𝑎𝐼) → 𝑎 ∈ ℝ)
3231absord 15464 . . . . . 6 ((𝜑𝑎𝐼) → ((abs‘𝑎) = 𝑎 ∨ (abs‘𝑎) = -𝑎))
3332adantr 480 . . . . 5 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → ((abs‘𝑎) = 𝑎 ∨ (abs‘𝑎) = -𝑎))
343, 30, 33mpjaod 859 . . . 4 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ 𝐼)
35 nnabscl 15374 . . . . 5 ((𝑎 ∈ ℤ ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ ℕ)
3612, 35sylan 579 . . . 4 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ ℕ)
3734, 36elind 4223 . . 3 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ (𝐼 ∩ ℕ))
3837ne0d 4365 . 2 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → (𝐼 ∩ ℕ) ≠ ∅)
39 zringlpirlem.n0 . . 3 (𝜑𝐼 ≠ {0})
40 zring0 21492 . . . 4 0 = (0g‘ℤring)
419, 40lidlnz 21275 . . 3 ((ℤring ∈ Ring ∧ 𝐼 ∈ (LIdeal‘ℤring) ∧ 𝐼 ≠ {0}) → ∃𝑎𝐼 𝑎 ≠ 0)
4222, 7, 39, 41mp3an2i 1466 . 2 (𝜑 → ∃𝑎𝐼 𝑎 ≠ 0)
4338, 42r19.29a 3168 1 (𝜑 → (𝐼 ∩ ℕ) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  wrex 3076  cin 3975  wss 3976  c0 4352  {csn 4648  cfv 6573  cc 11182  0cc0 11184  -cneg 11521  cn 12293  cz 12639  abscabs 15283  invgcminusg 18974  SubGrpcsubg 19160  Ringcrg 20260  SubRingcsubrg 20595  LIdealclidl 21239  fldccnfld 21387  ringczring 21480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-subrng 20572  df-subrg 20597  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-cnfld 21388  df-zring 21481
This theorem is referenced by:  zringlpirlem2  21497  zringlpirlem3  21498
  Copyright terms: Public domain W3C validator