| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zringlpirlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for zringlpir 21374. A nonzero ideal of integers contains some positive integers. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) |
| Ref | Expression |
|---|---|
| zringlpirlem.i | ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘ℤring)) |
| zringlpirlem.n0 | ⊢ (𝜑 → 𝐼 ≠ {0}) |
| Ref | Expression |
|---|---|
| zringlpirlem1 | ⊢ (𝜑 → (𝐼 ∩ ℕ) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐼) ∧ 𝑎 ≠ 0) → 𝑎 ∈ 𝐼) | |
| 2 | eleq1 2816 | . . . . . 6 ⊢ ((abs‘𝑎) = 𝑎 → ((abs‘𝑎) ∈ 𝐼 ↔ 𝑎 ∈ 𝐼)) | |
| 3 | 1, 2 | syl5ibrcom 247 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐼) ∧ 𝑎 ≠ 0) → ((abs‘𝑎) = 𝑎 → (abs‘𝑎) ∈ 𝐼)) |
| 4 | zsubrg 21327 | . . . . . . . . . . 11 ⊢ ℤ ∈ (SubRing‘ℂfld) | |
| 5 | subrgsubg 20462 | . . . . . . . . . . 11 ⊢ (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubGrp‘ℂfld)) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . . . . . 10 ⊢ ℤ ∈ (SubGrp‘ℂfld) |
| 7 | zringlpirlem.i | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘ℤring)) | |
| 8 | zringbas 21360 | . . . . . . . . . . . . 13 ⊢ ℤ = (Base‘ℤring) | |
| 9 | eqid 2729 | . . . . . . . . . . . . 13 ⊢ (LIdeal‘ℤring) = (LIdeal‘ℤring) | |
| 10 | 8, 9 | lidlss 21119 | . . . . . . . . . . . 12 ⊢ (𝐼 ∈ (LIdeal‘ℤring) → 𝐼 ⊆ ℤ) |
| 11 | 7, 10 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐼 ⊆ ℤ) |
| 12 | 11 | sselda 3935 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → 𝑎 ∈ ℤ) |
| 13 | df-zring 21354 | . . . . . . . . . . 11 ⊢ ℤring = (ℂfld ↾s ℤ) | |
| 14 | eqid 2729 | . . . . . . . . . . 11 ⊢ (invg‘ℂfld) = (invg‘ℂfld) | |
| 15 | eqid 2729 | . . . . . . . . . . 11 ⊢ (invg‘ℤring) = (invg‘ℤring) | |
| 16 | 13, 14, 15 | subginv 19012 | . . . . . . . . . 10 ⊢ ((ℤ ∈ (SubGrp‘ℂfld) ∧ 𝑎 ∈ ℤ) → ((invg‘ℂfld)‘𝑎) = ((invg‘ℤring)‘𝑎)) |
| 17 | 6, 12, 16 | sylancr 587 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ((invg‘ℂfld)‘𝑎) = ((invg‘ℤring)‘𝑎)) |
| 18 | 12 | zcnd 12581 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → 𝑎 ∈ ℂ) |
| 19 | cnfldneg 21302 | . . . . . . . . . 10 ⊢ (𝑎 ∈ ℂ → ((invg‘ℂfld)‘𝑎) = -𝑎) | |
| 20 | 18, 19 | syl 17 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ((invg‘ℂfld)‘𝑎) = -𝑎) |
| 21 | 17, 20 | eqtr3d 2766 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ((invg‘ℤring)‘𝑎) = -𝑎) |
| 22 | zringring 21356 | . . . . . . . . 9 ⊢ ℤring ∈ Ring | |
| 23 | 7 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → 𝐼 ∈ (LIdeal‘ℤring)) |
| 24 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → 𝑎 ∈ 𝐼) | |
| 25 | 9, 15 | lidlnegcl 21129 | . . . . . . . . 9 ⊢ ((ℤring ∈ Ring ∧ 𝐼 ∈ (LIdeal‘ℤring) ∧ 𝑎 ∈ 𝐼) → ((invg‘ℤring)‘𝑎) ∈ 𝐼) |
| 26 | 22, 23, 24, 25 | mp3an2i 1468 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ((invg‘ℤring)‘𝑎) ∈ 𝐼) |
| 27 | 21, 26 | eqeltrrd 2829 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → -𝑎 ∈ 𝐼) |
| 28 | 27 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐼) ∧ 𝑎 ≠ 0) → -𝑎 ∈ 𝐼) |
| 29 | eleq1 2816 | . . . . . 6 ⊢ ((abs‘𝑎) = -𝑎 → ((abs‘𝑎) ∈ 𝐼 ↔ -𝑎 ∈ 𝐼)) | |
| 30 | 28, 29 | syl5ibrcom 247 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐼) ∧ 𝑎 ≠ 0) → ((abs‘𝑎) = -𝑎 → (abs‘𝑎) ∈ 𝐼)) |
| 31 | 12 | zred 12580 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → 𝑎 ∈ ℝ) |
| 32 | 31 | absord 15323 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ((abs‘𝑎) = 𝑎 ∨ (abs‘𝑎) = -𝑎)) |
| 33 | 32 | adantr 480 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐼) ∧ 𝑎 ≠ 0) → ((abs‘𝑎) = 𝑎 ∨ (abs‘𝑎) = -𝑎)) |
| 34 | 3, 30, 33 | mpjaod 860 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐼) ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ 𝐼) |
| 35 | nnabscl 15233 | . . . . 5 ⊢ ((𝑎 ∈ ℤ ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ ℕ) | |
| 36 | 12, 35 | sylan 580 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐼) ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ ℕ) |
| 37 | 34, 36 | elind 4151 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐼) ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ (𝐼 ∩ ℕ)) |
| 38 | 37 | ne0d 4293 | . 2 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐼) ∧ 𝑎 ≠ 0) → (𝐼 ∩ ℕ) ≠ ∅) |
| 39 | zringlpirlem.n0 | . . 3 ⊢ (𝜑 → 𝐼 ≠ {0}) | |
| 40 | zring0 21365 | . . . 4 ⊢ 0 = (0g‘ℤring) | |
| 41 | 9, 40 | lidlnz 21149 | . . 3 ⊢ ((ℤring ∈ Ring ∧ 𝐼 ∈ (LIdeal‘ℤring) ∧ 𝐼 ≠ {0}) → ∃𝑎 ∈ 𝐼 𝑎 ≠ 0) |
| 42 | 22, 7, 39, 41 | mp3an2i 1468 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ 𝐼 𝑎 ≠ 0) |
| 43 | 38, 42 | r19.29a 3137 | 1 ⊢ (𝜑 → (𝐼 ∩ ℕ) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ∩ cin 3902 ⊆ wss 3903 ∅c0 4284 {csn 4577 ‘cfv 6482 ℂcc 11007 0cc0 11009 -cneg 11348 ℕcn 12128 ℤcz 12471 abscabs 15141 invgcminusg 18813 SubGrpcsubg 18999 Ringcrg 20118 SubRingcsubrg 20454 LIdealclidl 21113 ℂfldccnfld 21261 ℤringczring 21353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-rp 12894 df-fz 13411 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-sbg 18817 df-subg 19002 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-subrng 20431 df-subrg 20455 df-lmod 20765 df-lss 20835 df-sra 21077 df-rgmod 21078 df-lidl 21115 df-cnfld 21262 df-zring 21354 |
| This theorem is referenced by: zringlpirlem2 21370 zringlpirlem3 21371 |
| Copyright terms: Public domain | W3C validator |