MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zringlpirlem1 Structured version   Visualization version   GIF version

Theorem zringlpirlem1 21490
Description: Lemma for zringlpir 21495. A nonzero ideal of integers contains some positive integers. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.)
Hypotheses
Ref Expression
zringlpirlem.i (𝜑𝐼 ∈ (LIdeal‘ℤring))
zringlpirlem.n0 (𝜑𝐼 ≠ {0})
Assertion
Ref Expression
zringlpirlem1 (𝜑 → (𝐼 ∩ ℕ) ≠ ∅)

Proof of Theorem zringlpirlem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simplr 769 . . . . . 6 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → 𝑎𝐼)
2 eleq1 2826 . . . . . 6 ((abs‘𝑎) = 𝑎 → ((abs‘𝑎) ∈ 𝐼𝑎𝐼))
31, 2syl5ibrcom 247 . . . . 5 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → ((abs‘𝑎) = 𝑎 → (abs‘𝑎) ∈ 𝐼))
4 zsubrg 21455 . . . . . . . . . . 11 ℤ ∈ (SubRing‘ℂfld)
5 subrgsubg 20593 . . . . . . . . . . 11 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubGrp‘ℂfld))
64, 5ax-mp 5 . . . . . . . . . 10 ℤ ∈ (SubGrp‘ℂfld)
7 zringlpirlem.i . . . . . . . . . . . 12 (𝜑𝐼 ∈ (LIdeal‘ℤring))
8 zringbas 21481 . . . . . . . . . . . . 13 ℤ = (Base‘ℤring)
9 eqid 2734 . . . . . . . . . . . . 13 (LIdeal‘ℤring) = (LIdeal‘ℤring)
108, 9lidlss 21239 . . . . . . . . . . . 12 (𝐼 ∈ (LIdeal‘ℤring) → 𝐼 ⊆ ℤ)
117, 10syl 17 . . . . . . . . . . 11 (𝜑𝐼 ⊆ ℤ)
1211sselda 3994 . . . . . . . . . 10 ((𝜑𝑎𝐼) → 𝑎 ∈ ℤ)
13 df-zring 21475 . . . . . . . . . . 11 ring = (ℂflds ℤ)
14 eqid 2734 . . . . . . . . . . 11 (invg‘ℂfld) = (invg‘ℂfld)
15 eqid 2734 . . . . . . . . . . 11 (invg‘ℤring) = (invg‘ℤring)
1613, 14, 15subginv 19163 . . . . . . . . . 10 ((ℤ ∈ (SubGrp‘ℂfld) ∧ 𝑎 ∈ ℤ) → ((invg‘ℂfld)‘𝑎) = ((invg‘ℤring)‘𝑎))
176, 12, 16sylancr 587 . . . . . . . . 9 ((𝜑𝑎𝐼) → ((invg‘ℂfld)‘𝑎) = ((invg‘ℤring)‘𝑎))
1812zcnd 12720 . . . . . . . . . 10 ((𝜑𝑎𝐼) → 𝑎 ∈ ℂ)
19 cnfldneg 21425 . . . . . . . . . 10 (𝑎 ∈ ℂ → ((invg‘ℂfld)‘𝑎) = -𝑎)
2018, 19syl 17 . . . . . . . . 9 ((𝜑𝑎𝐼) → ((invg‘ℂfld)‘𝑎) = -𝑎)
2117, 20eqtr3d 2776 . . . . . . . 8 ((𝜑𝑎𝐼) → ((invg‘ℤring)‘𝑎) = -𝑎)
22 zringring 21477 . . . . . . . . 9 ring ∈ Ring
237adantr 480 . . . . . . . . 9 ((𝜑𝑎𝐼) → 𝐼 ∈ (LIdeal‘ℤring))
24 simpr 484 . . . . . . . . 9 ((𝜑𝑎𝐼) → 𝑎𝐼)
259, 15lidlnegcl 21249 . . . . . . . . 9 ((ℤring ∈ Ring ∧ 𝐼 ∈ (LIdeal‘ℤring) ∧ 𝑎𝐼) → ((invg‘ℤring)‘𝑎) ∈ 𝐼)
2622, 23, 24, 25mp3an2i 1465 . . . . . . . 8 ((𝜑𝑎𝐼) → ((invg‘ℤring)‘𝑎) ∈ 𝐼)
2721, 26eqeltrrd 2839 . . . . . . 7 ((𝜑𝑎𝐼) → -𝑎𝐼)
2827adantr 480 . . . . . 6 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → -𝑎𝐼)
29 eleq1 2826 . . . . . 6 ((abs‘𝑎) = -𝑎 → ((abs‘𝑎) ∈ 𝐼 ↔ -𝑎𝐼))
3028, 29syl5ibrcom 247 . . . . 5 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → ((abs‘𝑎) = -𝑎 → (abs‘𝑎) ∈ 𝐼))
3112zred 12719 . . . . . . 7 ((𝜑𝑎𝐼) → 𝑎 ∈ ℝ)
3231absord 15450 . . . . . 6 ((𝜑𝑎𝐼) → ((abs‘𝑎) = 𝑎 ∨ (abs‘𝑎) = -𝑎))
3332adantr 480 . . . . 5 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → ((abs‘𝑎) = 𝑎 ∨ (abs‘𝑎) = -𝑎))
343, 30, 33mpjaod 860 . . . 4 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ 𝐼)
35 nnabscl 15360 . . . . 5 ((𝑎 ∈ ℤ ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ ℕ)
3612, 35sylan 580 . . . 4 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ ℕ)
3734, 36elind 4209 . . 3 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ (𝐼 ∩ ℕ))
3837ne0d 4347 . 2 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → (𝐼 ∩ ℕ) ≠ ∅)
39 zringlpirlem.n0 . . 3 (𝜑𝐼 ≠ {0})
40 zring0 21486 . . . 4 0 = (0g‘ℤring)
419, 40lidlnz 21269 . . 3 ((ℤring ∈ Ring ∧ 𝐼 ∈ (LIdeal‘ℤring) ∧ 𝐼 ≠ {0}) → ∃𝑎𝐼 𝑎 ≠ 0)
4222, 7, 39, 41mp3an2i 1465 . 2 (𝜑 → ∃𝑎𝐼 𝑎 ≠ 0)
4338, 42r19.29a 3159 1 (𝜑 → (𝐼 ∩ ℕ) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1536  wcel 2105  wne 2937  wrex 3067  cin 3961  wss 3962  c0 4338  {csn 4630  cfv 6562  cc 11150  0cc0 11152  -cneg 11490  cn 12263  cz 12610  abscabs 15269  invgcminusg 18964  SubGrpcsubg 19150  Ringcrg 20250  SubRingcsubrg 20585  LIdealclidl 21233  fldccnfld 21381  ringczring 21474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-rp 13032  df-fz 13544  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-0g 17487  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-grp 18966  df-minusg 18967  df-sbg 18968  df-subg 19153  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-cring 20253  df-subrng 20562  df-subrg 20586  df-lmod 20876  df-lss 20947  df-sra 21189  df-rgmod 21190  df-lidl 21235  df-cnfld 21382  df-zring 21475
This theorem is referenced by:  zringlpirlem2  21491  zringlpirlem3  21492
  Copyright terms: Public domain W3C validator