MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zringlpirlem1 Structured version   Visualization version   GIF version

Theorem zringlpirlem1 21399
Description: Lemma for zringlpir 21404. A nonzero ideal of integers contains some positive integers. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.)
Hypotheses
Ref Expression
zringlpirlem.i (𝜑𝐼 ∈ (LIdeal‘ℤring))
zringlpirlem.n0 (𝜑𝐼 ≠ {0})
Assertion
Ref Expression
zringlpirlem1 (𝜑 → (𝐼 ∩ ℕ) ≠ ∅)

Proof of Theorem zringlpirlem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . . 6 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → 𝑎𝐼)
2 eleq1 2819 . . . . . 6 ((abs‘𝑎) = 𝑎 → ((abs‘𝑎) ∈ 𝐼𝑎𝐼))
31, 2syl5ibrcom 247 . . . . 5 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → ((abs‘𝑎) = 𝑎 → (abs‘𝑎) ∈ 𝐼))
4 zsubrg 21357 . . . . . . . . . . 11 ℤ ∈ (SubRing‘ℂfld)
5 subrgsubg 20492 . . . . . . . . . . 11 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubGrp‘ℂfld))
64, 5ax-mp 5 . . . . . . . . . 10 ℤ ∈ (SubGrp‘ℂfld)
7 zringlpirlem.i . . . . . . . . . . . 12 (𝜑𝐼 ∈ (LIdeal‘ℤring))
8 zringbas 21390 . . . . . . . . . . . . 13 ℤ = (Base‘ℤring)
9 eqid 2731 . . . . . . . . . . . . 13 (LIdeal‘ℤring) = (LIdeal‘ℤring)
108, 9lidlss 21149 . . . . . . . . . . . 12 (𝐼 ∈ (LIdeal‘ℤring) → 𝐼 ⊆ ℤ)
117, 10syl 17 . . . . . . . . . . 11 (𝜑𝐼 ⊆ ℤ)
1211sselda 3929 . . . . . . . . . 10 ((𝜑𝑎𝐼) → 𝑎 ∈ ℤ)
13 df-zring 21384 . . . . . . . . . . 11 ring = (ℂflds ℤ)
14 eqid 2731 . . . . . . . . . . 11 (invg‘ℂfld) = (invg‘ℂfld)
15 eqid 2731 . . . . . . . . . . 11 (invg‘ℤring) = (invg‘ℤring)
1613, 14, 15subginv 19046 . . . . . . . . . 10 ((ℤ ∈ (SubGrp‘ℂfld) ∧ 𝑎 ∈ ℤ) → ((invg‘ℂfld)‘𝑎) = ((invg‘ℤring)‘𝑎))
176, 12, 16sylancr 587 . . . . . . . . 9 ((𝜑𝑎𝐼) → ((invg‘ℂfld)‘𝑎) = ((invg‘ℤring)‘𝑎))
1812zcnd 12578 . . . . . . . . . 10 ((𝜑𝑎𝐼) → 𝑎 ∈ ℂ)
19 cnfldneg 21332 . . . . . . . . . 10 (𝑎 ∈ ℂ → ((invg‘ℂfld)‘𝑎) = -𝑎)
2018, 19syl 17 . . . . . . . . 9 ((𝜑𝑎𝐼) → ((invg‘ℂfld)‘𝑎) = -𝑎)
2117, 20eqtr3d 2768 . . . . . . . 8 ((𝜑𝑎𝐼) → ((invg‘ℤring)‘𝑎) = -𝑎)
22 zringring 21386 . . . . . . . . 9 ring ∈ Ring
237adantr 480 . . . . . . . . 9 ((𝜑𝑎𝐼) → 𝐼 ∈ (LIdeal‘ℤring))
24 simpr 484 . . . . . . . . 9 ((𝜑𝑎𝐼) → 𝑎𝐼)
259, 15lidlnegcl 21159 . . . . . . . . 9 ((ℤring ∈ Ring ∧ 𝐼 ∈ (LIdeal‘ℤring) ∧ 𝑎𝐼) → ((invg‘ℤring)‘𝑎) ∈ 𝐼)
2622, 23, 24, 25mp3an2i 1468 . . . . . . . 8 ((𝜑𝑎𝐼) → ((invg‘ℤring)‘𝑎) ∈ 𝐼)
2721, 26eqeltrrd 2832 . . . . . . 7 ((𝜑𝑎𝐼) → -𝑎𝐼)
2827adantr 480 . . . . . 6 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → -𝑎𝐼)
29 eleq1 2819 . . . . . 6 ((abs‘𝑎) = -𝑎 → ((abs‘𝑎) ∈ 𝐼 ↔ -𝑎𝐼))
3028, 29syl5ibrcom 247 . . . . 5 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → ((abs‘𝑎) = -𝑎 → (abs‘𝑎) ∈ 𝐼))
3112zred 12577 . . . . . . 7 ((𝜑𝑎𝐼) → 𝑎 ∈ ℝ)
3231absord 15323 . . . . . 6 ((𝜑𝑎𝐼) → ((abs‘𝑎) = 𝑎 ∨ (abs‘𝑎) = -𝑎))
3332adantr 480 . . . . 5 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → ((abs‘𝑎) = 𝑎 ∨ (abs‘𝑎) = -𝑎))
343, 30, 33mpjaod 860 . . . 4 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ 𝐼)
35 nnabscl 15233 . . . . 5 ((𝑎 ∈ ℤ ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ ℕ)
3612, 35sylan 580 . . . 4 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ ℕ)
3734, 36elind 4147 . . 3 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ (𝐼 ∩ ℕ))
3837ne0d 4289 . 2 (((𝜑𝑎𝐼) ∧ 𝑎 ≠ 0) → (𝐼 ∩ ℕ) ≠ ∅)
39 zringlpirlem.n0 . . 3 (𝜑𝐼 ≠ {0})
40 zring0 21395 . . . 4 0 = (0g‘ℤring)
419, 40lidlnz 21179 . . 3 ((ℤring ∈ Ring ∧ 𝐼 ∈ (LIdeal‘ℤring) ∧ 𝐼 ≠ {0}) → ∃𝑎𝐼 𝑎 ≠ 0)
4222, 7, 39, 41mp3an2i 1468 . 2 (𝜑 → ∃𝑎𝐼 𝑎 ≠ 0)
4338, 42r19.29a 3140 1 (𝜑 → (𝐼 ∩ ℕ) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  wrex 3056  cin 3896  wss 3897  c0 4280  {csn 4573  cfv 6481  cc 11004  0cc0 11006  -cneg 11345  cn 12125  cz 12468  abscabs 15141  invgcminusg 18847  SubGrpcsubg 19033  Ringcrg 20151  SubRingcsubrg 20484  LIdealclidl 21143  fldccnfld 21291  ringczring 21383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-fz 13408  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-subrng 20461  df-subrg 20485  df-lmod 20795  df-lss 20865  df-sra 21107  df-rgmod 21108  df-lidl 21145  df-cnfld 21292  df-zring 21384
This theorem is referenced by:  zringlpirlem2  21400  zringlpirlem3  21401
  Copyright terms: Public domain W3C validator