| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zlmclm | Structured version Visualization version GIF version | ||
| Description: The ℤ-module operation turns an arbitrary abelian group into a subcomplex module. (Contributed by Mario Carneiro, 30-Oct-2015.) |
| Ref | Expression |
|---|---|
| zlmclm.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
| Ref | Expression |
|---|---|
| zlmclm | ⊢ (𝐺 ∈ Abel ↔ 𝑊 ∈ ℂMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zlmclm.w | . . . . 5 ⊢ 𝑊 = (ℤMod‘𝐺) | |
| 2 | 1 | zlmlmod 21466 | . . . 4 ⊢ (𝐺 ∈ Abel ↔ 𝑊 ∈ LMod) |
| 3 | 2 | biimpi 216 | . . 3 ⊢ (𝐺 ∈ Abel → 𝑊 ∈ LMod) |
| 4 | 1 | zlmsca 21464 | . . . 4 ⊢ (𝐺 ∈ Abel → ℤring = (Scalar‘𝑊)) |
| 5 | df-zring 21391 | . . . 4 ⊢ ℤring = (ℂfld ↾s ℤ) | |
| 6 | 4, 5 | eqtr3di 2779 | . . 3 ⊢ (𝐺 ∈ Abel → (Scalar‘𝑊) = (ℂfld ↾s ℤ)) |
| 7 | zsubrg 21364 | . . . 4 ⊢ ℤ ∈ (SubRing‘ℂfld) | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → ℤ ∈ (SubRing‘ℂfld)) |
| 9 | eqid 2729 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 10 | 9 | isclmi 25012 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (Scalar‘𝑊) = (ℂfld ↾s ℤ) ∧ ℤ ∈ (SubRing‘ℂfld)) → 𝑊 ∈ ℂMod) |
| 11 | 3, 6, 8, 10 | syl3anc 1373 | . 2 ⊢ (𝐺 ∈ Abel → 𝑊 ∈ ℂMod) |
| 12 | clmlmod 25002 | . . 3 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) | |
| 13 | 12, 2 | sylibr 234 | . 2 ⊢ (𝑊 ∈ ℂMod → 𝐺 ∈ Abel) |
| 14 | 11, 13 | impbii 209 | 1 ⊢ (𝐺 ∈ Abel ↔ 𝑊 ∈ ℂMod) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ‘cfv 6500 (class class class)co 7370 ℤcz 12508 ↾s cress 17178 Scalarcsca 17201 Abelcabl 19697 SubRingcsubrg 20491 LModclmod 20800 ℂfldccnfld 21298 ℤringczring 21390 ℤModczlm 21444 ℂModcclm 24997 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 ax-addf 11126 ax-mulf 11127 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6263 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7327 df-ov 7373 df-oprab 7374 df-mpo 7375 df-om 7824 df-1st 7948 df-2nd 7949 df-frecs 8238 df-wrecs 8269 df-recs 8318 df-rdg 8356 df-1o 8412 df-er 8649 df-en 8897 df-dom 8898 df-sdom 8899 df-fin 8900 df-pnf 11189 df-mnf 11190 df-xr 11191 df-ltxr 11192 df-le 11193 df-sub 11386 df-neg 11387 df-nn 12166 df-2 12228 df-3 12229 df-4 12230 df-5 12231 df-6 12232 df-7 12233 df-8 12234 df-9 12235 df-n0 12422 df-z 12509 df-dec 12629 df-uz 12773 df-fz 13448 df-fzo 13595 df-seq 13946 df-struct 17095 df-sets 17112 df-slot 17130 df-ndx 17142 df-base 17158 df-ress 17179 df-plusg 17211 df-mulr 17212 df-starv 17213 df-sca 17214 df-vsca 17215 df-tset 17217 df-ple 17218 df-ds 17220 df-unif 17221 df-0g 17382 df-mgm 18551 df-sgrp 18630 df-mnd 18646 df-grp 18852 df-minusg 18853 df-mulg 18984 df-subg 19039 df-cmn 19698 df-abl 19699 df-mgp 20063 df-rng 20075 df-ur 20104 df-ring 20157 df-cring 20158 df-subrng 20468 df-subrg 20492 df-lmod 20802 df-cnfld 21299 df-zring 21391 df-zlm 21448 df-clm 24998 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |