| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfdisj2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition for disjoint classes. (Contributed by NM, 17-Jun-2017.) |
| Ref | Expression |
|---|---|
| dfdisj2 | ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-disj 5087 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
| 2 | df-rmo 3359 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 3 | 2 | albii 1819 | . 2 ⊢ (∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ↔ ∀𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2108 ∃*wmo 2537 ∃*wrmo 3358 Disj wdisj 5086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-rmo 3359 df-disj 5087 |
| This theorem is referenced by: disjss1 5092 nfdisjw 5098 nfdisj 5099 invdisj 5105 sndisj 5111 disjxsn 5113 disjss3 5118 vitalilem3 25563 |
| Copyright terms: Public domain | W3C validator |