Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfdisj2 | Structured version Visualization version GIF version |
Description: Alternate definition for disjoint classes. (Contributed by NM, 17-Jun-2017.) |
Ref | Expression |
---|---|
dfdisj2 | ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-disj 5040 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
2 | df-rmo 3071 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
3 | 2 | albii 1822 | . 2 ⊢ (∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ↔ ∀𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
4 | 1, 3 | bitri 274 | 1 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∀wal 1537 ∈ wcel 2106 ∃*wmo 2538 ∃*wrmo 3067 Disj wdisj 5039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-rmo 3071 df-disj 5040 |
This theorem is referenced by: disjss1 5045 nfdisjw 5051 nfdisj 5052 invdisj 5058 sndisj 5065 disjxsn 5067 disjss3 5073 vitalilem3 24774 |
Copyright terms: Public domain | W3C validator |