| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sndisj | Structured version Visualization version GIF version | ||
| Description: Any collection of singletons is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| sndisj | ⊢ Disj 𝑥 ∈ 𝐴 {𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdisj2 5111 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 {𝑥} ↔ ∀𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥})) | |
| 2 | moeq 3712 | . . 3 ⊢ ∃*𝑥 𝑥 = 𝑦 | |
| 3 | simpr 484 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥}) → 𝑦 ∈ {𝑥}) | |
| 4 | velsn 4641 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥) | |
| 5 | 3, 4 | sylib 218 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥}) → 𝑦 = 𝑥) |
| 6 | 5 | equcomd 2017 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥}) → 𝑥 = 𝑦) |
| 7 | 6 | moimi 2544 | . . 3 ⊢ (∃*𝑥 𝑥 = 𝑦 → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥})) |
| 8 | 2, 7 | ax-mp 5 | . 2 ⊢ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥}) |
| 9 | 1, 8 | mpgbir 1798 | 1 ⊢ Disj 𝑥 ∈ 𝐴 {𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2107 ∃*wmo 2537 {csn 4625 Disj wdisj 5109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-mo 2539 df-clab 2714 df-cleq 2728 df-clel 2815 df-rmo 3379 df-v 3481 df-sn 4626 df-disj 5110 |
| This theorem is referenced by: 0disj 5135 fnpreimac 32682 elrspunidl 33457 sibfof 34343 disjsnxp 45080 vonct 46713 |
| Copyright terms: Public domain | W3C validator |