![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sndisj | Structured version Visualization version GIF version |
Description: Any collection of singletons is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
sndisj | ⊢ Disj 𝑥 ∈ 𝐴 {𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisj2 4932 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 {𝑥} ↔ ∀𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥})) | |
2 | moeq 3634 | . . 3 ⊢ ∃*𝑥 𝑥 = 𝑦 | |
3 | simpr 485 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥}) → 𝑦 ∈ {𝑥}) | |
4 | velsn 4488 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥) | |
5 | 3, 4 | sylib 219 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥}) → 𝑦 = 𝑥) |
6 | 5 | equcomd 2003 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥}) → 𝑥 = 𝑦) |
7 | 6 | moimi 2581 | . . 3 ⊢ (∃*𝑥 𝑥 = 𝑦 → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥})) |
8 | 2, 7 | ax-mp 5 | . 2 ⊢ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥}) |
9 | 1, 8 | mpgbir 1781 | 1 ⊢ Disj 𝑥 ∈ 𝐴 {𝑥} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∈ wcel 2081 ∃*wmo 2574 {csn 4472 Disj wdisj 4930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-rmo 3113 df-v 3439 df-sn 4473 df-disj 4931 |
This theorem is referenced by: 0disj 4955 fnpreimac 30106 sibfof 31215 disjsnxp 40871 vonct 42517 |
Copyright terms: Public domain | W3C validator |