MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sndisj Structured version   Visualization version   GIF version

Theorem sndisj 5061
Description: Any collection of singletons is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
sndisj Disj 𝑥𝐴 {𝑥}

Proof of Theorem sndisj
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfdisj2 5037 . 2 (Disj 𝑥𝐴 {𝑥} ↔ ∀𝑦∃*𝑥(𝑥𝐴𝑦 ∈ {𝑥}))
2 moeq 3637 . . 3 ∃*𝑥 𝑥 = 𝑦
3 simpr 484 . . . . . 6 ((𝑥𝐴𝑦 ∈ {𝑥}) → 𝑦 ∈ {𝑥})
4 velsn 4574 . . . . . 6 (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥)
53, 4sylib 217 . . . . 5 ((𝑥𝐴𝑦 ∈ {𝑥}) → 𝑦 = 𝑥)
65equcomd 2023 . . . 4 ((𝑥𝐴𝑦 ∈ {𝑥}) → 𝑥 = 𝑦)
76moimi 2545 . . 3 (∃*𝑥 𝑥 = 𝑦 → ∃*𝑥(𝑥𝐴𝑦 ∈ {𝑥}))
82, 7ax-mp 5 . 2 ∃*𝑥(𝑥𝐴𝑦 ∈ {𝑥})
91, 8mpgbir 1803 1 Disj 𝑥𝐴 {𝑥}
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2108  ∃*wmo 2538  {csn 4558  Disj wdisj 5035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2817  df-rmo 3071  df-v 3424  df-sn 4559  df-disj 5036
This theorem is referenced by:  0disj  5062  fnpreimac  30910  elrspunidl  31508  sibfof  32207  disjsnxp  42507  vonct  44121
  Copyright terms: Public domain W3C validator