MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sndisj Structured version   Visualization version   GIF version

Theorem sndisj 5158
Description: Any collection of singletons is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
sndisj Disj 𝑥𝐴 {𝑥}

Proof of Theorem sndisj
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfdisj2 5135 . 2 (Disj 𝑥𝐴 {𝑥} ↔ ∀𝑦∃*𝑥(𝑥𝐴𝑦 ∈ {𝑥}))
2 moeq 3729 . . 3 ∃*𝑥 𝑥 = 𝑦
3 simpr 484 . . . . . 6 ((𝑥𝐴𝑦 ∈ {𝑥}) → 𝑦 ∈ {𝑥})
4 velsn 4664 . . . . . 6 (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥)
53, 4sylib 218 . . . . 5 ((𝑥𝐴𝑦 ∈ {𝑥}) → 𝑦 = 𝑥)
65equcomd 2018 . . . 4 ((𝑥𝐴𝑦 ∈ {𝑥}) → 𝑥 = 𝑦)
76moimi 2548 . . 3 (∃*𝑥 𝑥 = 𝑦 → ∃*𝑥(𝑥𝐴𝑦 ∈ {𝑥}))
82, 7ax-mp 5 . 2 ∃*𝑥(𝑥𝐴𝑦 ∈ {𝑥})
91, 8mpgbir 1797 1 Disj 𝑥𝐴 {𝑥}
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2108  ∃*wmo 2541  {csn 4648  Disj wdisj 5133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-rmo 3388  df-v 3490  df-sn 4649  df-disj 5134
This theorem is referenced by:  0disj  5159  fnpreimac  32689  elrspunidl  33421  sibfof  34305  disjsnxp  44972  vonct  46614
  Copyright terms: Public domain W3C validator