| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sndisj | Structured version Visualization version GIF version | ||
| Description: Any collection of singletons is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| sndisj | ⊢ Disj 𝑥 ∈ 𝐴 {𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdisj2 5093 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 {𝑥} ↔ ∀𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥})) | |
| 2 | moeq 3695 | . . 3 ⊢ ∃*𝑥 𝑥 = 𝑦 | |
| 3 | simpr 484 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥}) → 𝑦 ∈ {𝑥}) | |
| 4 | velsn 4622 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥) | |
| 5 | 3, 4 | sylib 218 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥}) → 𝑦 = 𝑥) |
| 6 | 5 | equcomd 2019 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥}) → 𝑥 = 𝑦) |
| 7 | 6 | moimi 2545 | . . 3 ⊢ (∃*𝑥 𝑥 = 𝑦 → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥})) |
| 8 | 2, 7 | ax-mp 5 | . 2 ⊢ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥}) |
| 9 | 1, 8 | mpgbir 1799 | 1 ⊢ Disj 𝑥 ∈ 𝐴 {𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 ∃*wmo 2538 {csn 4606 Disj wdisj 5091 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-mo 2540 df-clab 2715 df-cleq 2728 df-clel 2810 df-rmo 3364 df-v 3466 df-sn 4607 df-disj 5092 |
| This theorem is referenced by: 0disj 5117 fnpreimac 32654 elrspunidl 33448 sibfof 34377 disjsnxp 45061 vonct 46689 |
| Copyright terms: Public domain | W3C validator |