Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sndisj | Structured version Visualization version GIF version |
Description: Any collection of singletons is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
sndisj | ⊢ Disj 𝑥 ∈ 𝐴 {𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisj2 5063 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 {𝑥} ↔ ∀𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥})) | |
2 | moeq 3656 | . . 3 ⊢ ∃*𝑥 𝑥 = 𝑦 | |
3 | simpr 486 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥}) → 𝑦 ∈ {𝑥}) | |
4 | velsn 4593 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥) | |
5 | 3, 4 | sylib 217 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥}) → 𝑦 = 𝑥) |
6 | 5 | equcomd 2022 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥}) → 𝑥 = 𝑦) |
7 | 6 | moimi 2544 | . . 3 ⊢ (∃*𝑥 𝑥 = 𝑦 → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥})) |
8 | 2, 7 | ax-mp 5 | . 2 ⊢ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥}) |
9 | 1, 8 | mpgbir 1801 | 1 ⊢ Disj 𝑥 ∈ 𝐴 {𝑥} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 ∈ wcel 2106 ∃*wmo 2537 {csn 4577 Disj wdisj 5061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1544 df-ex 1782 df-sb 2068 df-mo 2539 df-clab 2715 df-cleq 2729 df-clel 2815 df-rmo 3350 df-v 3444 df-sn 4578 df-disj 5062 |
This theorem is referenced by: 0disj 5088 fnpreimac 31293 elrspunidl 31901 sibfof 32605 disjsnxp 42990 vonct 44620 |
Copyright terms: Public domain | W3C validator |