![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > invdisj | Structured version Visualization version GIF version |
Description: If there is a function 𝐶(𝑦) such that 𝐶(𝑦) = 𝑥 for all 𝑦 ∈ 𝐵(𝑥), then the sets 𝐵(𝑥) for distinct 𝑥 ∈ 𝐴 are disjoint. (Contributed by Mario Carneiro, 10-Dec-2016.) |
Ref | Expression |
---|---|
invdisj | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 = 𝑥 → Disj 𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfra2w 3294 | . . 3 ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 = 𝑥 | |
2 | df-ral 3060 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 = 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝐶 = 𝑥)) | |
3 | rsp 3242 | . . . . . . . . 9 ⊢ (∀𝑦 ∈ 𝐵 𝐶 = 𝑥 → (𝑦 ∈ 𝐵 → 𝐶 = 𝑥)) | |
4 | eqcom 2737 | . . . . . . . . 9 ⊢ (𝐶 = 𝑥 ↔ 𝑥 = 𝐶) | |
5 | 3, 4 | imbitrdi 250 | . . . . . . . 8 ⊢ (∀𝑦 ∈ 𝐵 𝐶 = 𝑥 → (𝑦 ∈ 𝐵 → 𝑥 = 𝐶)) |
6 | 5 | imim2i 16 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝐶 = 𝑥) → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝑥 = 𝐶))) |
7 | 6 | impd 409 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝐶 = 𝑥) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 = 𝐶)) |
8 | 7 | alimi 1811 | . . . . 5 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝐶 = 𝑥) → ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 = 𝐶)) |
9 | 2, 8 | sylbi 216 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 = 𝑥 → ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 = 𝐶)) |
10 | mo2icl 3709 | . . . 4 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 = 𝐶) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 = 𝑥 → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
12 | 1, 11 | alrimi 2204 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 = 𝑥 → ∀𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
13 | dfdisj2 5114 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
14 | 12, 13 | sylibr 233 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 = 𝑥 → Disj 𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∀wal 1537 = wceq 1539 ∈ wcel 2104 ∃*wmo 2530 ∀wral 3059 Disj wdisj 5112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rmo 3374 df-v 3474 df-disj 5113 |
This theorem is referenced by: invdisjrabw 5132 invdisjrab 5133 ackbijnn 15778 incexc2 15788 phisum 16727 itg1addlem1 25441 musum 26931 lgsquadlem1 27119 lgsquadlem2 27120 disjabrex 32080 disjabrexf 32081 actfunsnrndisj 33915 poimirlem27 36818 |
Copyright terms: Public domain | W3C validator |