![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > invdisj | Structured version Visualization version GIF version |
Description: If there is a function 𝐶(𝑦) such that 𝐶(𝑦) = 𝑥 for all 𝑦 ∈ 𝐵(𝑥), then the sets 𝐵(𝑥) for distinct 𝑥 ∈ 𝐴 are disjoint. (Contributed by Mario Carneiro, 10-Dec-2016.) |
Ref | Expression |
---|---|
invdisj | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 = 𝑥 → Disj 𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfra2w 3305 | . . 3 ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 = 𝑥 | |
2 | df-ral 3068 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 = 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝐶 = 𝑥)) | |
3 | rsp 3253 | . . . . . . . . 9 ⊢ (∀𝑦 ∈ 𝐵 𝐶 = 𝑥 → (𝑦 ∈ 𝐵 → 𝐶 = 𝑥)) | |
4 | eqcom 2747 | . . . . . . . . 9 ⊢ (𝐶 = 𝑥 ↔ 𝑥 = 𝐶) | |
5 | 3, 4 | imbitrdi 251 | . . . . . . . 8 ⊢ (∀𝑦 ∈ 𝐵 𝐶 = 𝑥 → (𝑦 ∈ 𝐵 → 𝑥 = 𝐶)) |
6 | 5 | imim2i 16 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝐶 = 𝑥) → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝑥 = 𝐶))) |
7 | 6 | impd 410 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝐶 = 𝑥) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 = 𝐶)) |
8 | 7 | alimi 1809 | . . . . 5 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝐶 = 𝑥) → ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 = 𝐶)) |
9 | 2, 8 | sylbi 217 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 = 𝑥 → ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 = 𝐶)) |
10 | mo2icl 3736 | . . . 4 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 = 𝐶) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 = 𝑥 → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
12 | 1, 11 | alrimi 2214 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 = 𝑥 → ∀𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
13 | dfdisj2 5135 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
14 | 12, 13 | sylibr 234 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 = 𝑥 → Disj 𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 = wceq 1537 ∈ wcel 2108 ∃*wmo 2541 ∀wral 3067 Disj wdisj 5133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rmo 3388 df-v 3490 df-disj 5134 |
This theorem is referenced by: invdisjrab 5153 ackbijnn 15876 incexc2 15886 phisum 16837 itg1addlem1 25746 musum 27252 lgsquadlem1 27442 lgsquadlem2 27443 disjabrex 32604 disjabrexf 32605 actfunsnrndisj 34582 poimirlem27 37607 |
Copyright terms: Public domain | W3C validator |