MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjss3 Structured version   Visualization version   GIF version

Theorem disjss3 4961
Description: Expand a disjoint collection with any number of empty sets. (Contributed by Mario Carneiro, 15-Nov-2016.)
Assertion
Ref Expression
disjss3 ((𝐴𝐵 ∧ ∀𝑥 ∈ (𝐵𝐴)𝐶 = ∅) → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem disjss3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-ral 3110 . . . . . . 7 (∀𝑥 ∈ (𝐵𝐴)𝐶 = ∅ ↔ ∀𝑥(𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅))
2 simprr 769 . . . . . . . . . . . 12 (((𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅) ∧ (𝑥𝐵𝑦𝐶)) → 𝑦𝐶)
3 n0i 4219 . . . . . . . . . . . 12 (𝑦𝐶 → ¬ 𝐶 = ∅)
42, 3syl 17 . . . . . . . . . . 11 (((𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅) ∧ (𝑥𝐵𝑦𝐶)) → ¬ 𝐶 = ∅)
5 simpl 483 . . . . . . . . . . . . 13 ((𝑥𝐵𝑦𝐶) → 𝑥𝐵)
65adantl 482 . . . . . . . . . . . 12 (((𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅) ∧ (𝑥𝐵𝑦𝐶)) → 𝑥𝐵)
7 eldif 3869 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
8 simpl 483 . . . . . . . . . . . . 13 (((𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅) ∧ (𝑥𝐵𝑦𝐶)) → (𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅))
97, 8syl5bir 244 . . . . . . . . . . . 12 (((𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅) ∧ (𝑥𝐵𝑦𝐶)) → ((𝑥𝐵 ∧ ¬ 𝑥𝐴) → 𝐶 = ∅))
106, 9mpand 691 . . . . . . . . . . 11 (((𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅) ∧ (𝑥𝐵𝑦𝐶)) → (¬ 𝑥𝐴𝐶 = ∅))
114, 10mt3d 150 . . . . . . . . . 10 (((𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅) ∧ (𝑥𝐵𝑦𝐶)) → 𝑥𝐴)
1211, 2jca 512 . . . . . . . . 9 (((𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅) ∧ (𝑥𝐵𝑦𝐶)) → (𝑥𝐴𝑦𝐶))
1312ex 413 . . . . . . . 8 ((𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅) → ((𝑥𝐵𝑦𝐶) → (𝑥𝐴𝑦𝐶)))
1413alimi 1793 . . . . . . 7 (∀𝑥(𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅) → ∀𝑥((𝑥𝐵𝑦𝐶) → (𝑥𝐴𝑦𝐶)))
151, 14sylbi 218 . . . . . 6 (∀𝑥 ∈ (𝐵𝐴)𝐶 = ∅ → ∀𝑥((𝑥𝐵𝑦𝐶) → (𝑥𝐴𝑦𝐶)))
16 moim 2580 . . . . . 6 (∀𝑥((𝑥𝐵𝑦𝐶) → (𝑥𝐴𝑦𝐶)) → (∃*𝑥(𝑥𝐴𝑦𝐶) → ∃*𝑥(𝑥𝐵𝑦𝐶)))
1715, 16syl 17 . . . . 5 (∀𝑥 ∈ (𝐵𝐴)𝐶 = ∅ → (∃*𝑥(𝑥𝐴𝑦𝐶) → ∃*𝑥(𝑥𝐵𝑦𝐶)))
1817alimdv 1894 . . . 4 (∀𝑥 ∈ (𝐵𝐴)𝐶 = ∅ → (∀𝑦∃*𝑥(𝑥𝐴𝑦𝐶) → ∀𝑦∃*𝑥(𝑥𝐵𝑦𝐶)))
19 dfdisj2 4932 . . . 4 (Disj 𝑥𝐴 𝐶 ↔ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝐶))
20 dfdisj2 4932 . . . 4 (Disj 𝑥𝐵 𝐶 ↔ ∀𝑦∃*𝑥(𝑥𝐵𝑦𝐶))
2118, 19, 203imtr4g 297 . . 3 (∀𝑥 ∈ (𝐵𝐴)𝐶 = ∅ → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
2221adantl 482 . 2 ((𝐴𝐵 ∧ ∀𝑥 ∈ (𝐵𝐴)𝐶 = ∅) → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
23 disjss1 4936 . . 3 (𝐴𝐵 → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶))
2423adantr 481 . 2 ((𝐴𝐵 ∧ ∀𝑥 ∈ (𝐵𝐴)𝐶 = ∅) → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶))
2522, 24impbid 213 1 ((𝐴𝐵 ∧ ∀𝑥 ∈ (𝐵𝐴)𝐶 = ∅) → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wal 1520   = wceq 1522  wcel 2081  ∃*wmo 2574  wral 3105  cdif 3856  wss 3859  c0 4211  Disj wdisj 4930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-ext 2769
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ral 3110  df-rmo 3113  df-v 3439  df-dif 3862  df-in 3866  df-ss 3874  df-nul 4212  df-disj 4931
This theorem is referenced by:  carsggect  31193
  Copyright terms: Public domain W3C validator