MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjss3 Structured version   Visualization version   GIF version

Theorem disjss3 4836
Description: Expand a disjoint collection with any number of empty sets. (Contributed by Mario Carneiro, 15-Nov-2016.)
Assertion
Ref Expression
disjss3 ((𝐴𝐵 ∧ ∀𝑥 ∈ (𝐵𝐴)𝐶 = ∅) → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem disjss3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-ral 3097 . . . . . . 7 (∀𝑥 ∈ (𝐵𝐴)𝐶 = ∅ ↔ ∀𝑥(𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅))
2 simprr 780 . . . . . . . . . . . 12 (((𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅) ∧ (𝑥𝐵𝑦𝐶)) → 𝑦𝐶)
3 n0i 4115 . . . . . . . . . . . 12 (𝑦𝐶 → ¬ 𝐶 = ∅)
42, 3syl 17 . . . . . . . . . . 11 (((𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅) ∧ (𝑥𝐵𝑦𝐶)) → ¬ 𝐶 = ∅)
5 simpl 470 . . . . . . . . . . . . 13 ((𝑥𝐵𝑦𝐶) → 𝑥𝐵)
65adantl 469 . . . . . . . . . . . 12 (((𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅) ∧ (𝑥𝐵𝑦𝐶)) → 𝑥𝐵)
7 eldif 3773 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
8 simpl 470 . . . . . . . . . . . . 13 (((𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅) ∧ (𝑥𝐵𝑦𝐶)) → (𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅))
97, 8syl5bir 234 . . . . . . . . . . . 12 (((𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅) ∧ (𝑥𝐵𝑦𝐶)) → ((𝑥𝐵 ∧ ¬ 𝑥𝐴) → 𝐶 = ∅))
106, 9mpand 678 . . . . . . . . . . 11 (((𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅) ∧ (𝑥𝐵𝑦𝐶)) → (¬ 𝑥𝐴𝐶 = ∅))
114, 10mt3d 142 . . . . . . . . . 10 (((𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅) ∧ (𝑥𝐵𝑦𝐶)) → 𝑥𝐴)
1211, 2jca 503 . . . . . . . . 9 (((𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅) ∧ (𝑥𝐵𝑦𝐶)) → (𝑥𝐴𝑦𝐶))
1312ex 399 . . . . . . . 8 ((𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅) → ((𝑥𝐵𝑦𝐶) → (𝑥𝐴𝑦𝐶)))
1413alimi 1896 . . . . . . 7 (∀𝑥(𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅) → ∀𝑥((𝑥𝐵𝑦𝐶) → (𝑥𝐴𝑦𝐶)))
151, 14sylbi 208 . . . . . 6 (∀𝑥 ∈ (𝐵𝐴)𝐶 = ∅ → ∀𝑥((𝑥𝐵𝑦𝐶) → (𝑥𝐴𝑦𝐶)))
16 moim 2679 . . . . . 6 (∀𝑥((𝑥𝐵𝑦𝐶) → (𝑥𝐴𝑦𝐶)) → (∃*𝑥(𝑥𝐴𝑦𝐶) → ∃*𝑥(𝑥𝐵𝑦𝐶)))
1715, 16syl 17 . . . . 5 (∀𝑥 ∈ (𝐵𝐴)𝐶 = ∅ → (∃*𝑥(𝑥𝐴𝑦𝐶) → ∃*𝑥(𝑥𝐵𝑦𝐶)))
1817alimdv 2007 . . . 4 (∀𝑥 ∈ (𝐵𝐴)𝐶 = ∅ → (∀𝑦∃*𝑥(𝑥𝐴𝑦𝐶) → ∀𝑦∃*𝑥(𝑥𝐵𝑦𝐶)))
19 dfdisj2 4807 . . . 4 (Disj 𝑥𝐴 𝐶 ↔ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝐶))
20 dfdisj2 4807 . . . 4 (Disj 𝑥𝐵 𝐶 ↔ ∀𝑦∃*𝑥(𝑥𝐵𝑦𝐶))
2118, 19, 203imtr4g 287 . . 3 (∀𝑥 ∈ (𝐵𝐴)𝐶 = ∅ → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
2221adantl 469 . 2 ((𝐴𝐵 ∧ ∀𝑥 ∈ (𝐵𝐴)𝐶 = ∅) → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
23 disjss1 4811 . . 3 (𝐴𝐵 → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶))
2423adantr 468 . 2 ((𝐴𝐵 ∧ ∀𝑥 ∈ (𝐵𝐴)𝐶 = ∅) → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶))
2522, 24impbid 203 1 ((𝐴𝐵 ∧ ∀𝑥 ∈ (𝐵𝐴)𝐶 = ∅) → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wal 1635   = wceq 1637  wcel 2155  ∃*wmo 2630  wral 3092  cdif 3760  wss 3763  c0 4110  Disj wdisj 4805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2067  ax-7 2103  ax-9 2164  ax-10 2184  ax-11 2200  ax-12 2213  ax-13 2419  ax-ext 2781
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2060  df-eu 2633  df-mo 2634  df-clab 2789  df-cleq 2795  df-clel 2798  df-nfc 2933  df-ral 3097  df-rmo 3100  df-v 3389  df-dif 3766  df-in 3770  df-ss 3777  df-nul 4111  df-disj 4806
This theorem is referenced by:  carsggect  30699
  Copyright terms: Public domain W3C validator