MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjss3 Structured version   Visualization version   GIF version

Theorem disjss3 5069
Description: Expand a disjoint collection with any number of empty sets. (Contributed by Mario Carneiro, 15-Nov-2016.)
Assertion
Ref Expression
disjss3 ((𝐴𝐵 ∧ ∀𝑥 ∈ (𝐵𝐴)𝐶 = ∅) → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem disjss3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-ral 3068 . . . . . . 7 (∀𝑥 ∈ (𝐵𝐴)𝐶 = ∅ ↔ ∀𝑥(𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅))
2 simprr 769 . . . . . . . . . . . 12 (((𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅) ∧ (𝑥𝐵𝑦𝐶)) → 𝑦𝐶)
3 n0i 4264 . . . . . . . . . . . 12 (𝑦𝐶 → ¬ 𝐶 = ∅)
42, 3syl 17 . . . . . . . . . . 11 (((𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅) ∧ (𝑥𝐵𝑦𝐶)) → ¬ 𝐶 = ∅)
5 simpl 482 . . . . . . . . . . . . 13 ((𝑥𝐵𝑦𝐶) → 𝑥𝐵)
65adantl 481 . . . . . . . . . . . 12 (((𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅) ∧ (𝑥𝐵𝑦𝐶)) → 𝑥𝐵)
7 eldif 3893 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
8 simpl 482 . . . . . . . . . . . . 13 (((𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅) ∧ (𝑥𝐵𝑦𝐶)) → (𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅))
97, 8syl5bir 242 . . . . . . . . . . . 12 (((𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅) ∧ (𝑥𝐵𝑦𝐶)) → ((𝑥𝐵 ∧ ¬ 𝑥𝐴) → 𝐶 = ∅))
106, 9mpand 691 . . . . . . . . . . 11 (((𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅) ∧ (𝑥𝐵𝑦𝐶)) → (¬ 𝑥𝐴𝐶 = ∅))
114, 10mt3d 148 . . . . . . . . . 10 (((𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅) ∧ (𝑥𝐵𝑦𝐶)) → 𝑥𝐴)
1211, 2jca 511 . . . . . . . . 9 (((𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅) ∧ (𝑥𝐵𝑦𝐶)) → (𝑥𝐴𝑦𝐶))
1312ex 412 . . . . . . . 8 ((𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅) → ((𝑥𝐵𝑦𝐶) → (𝑥𝐴𝑦𝐶)))
1413alimi 1815 . . . . . . 7 (∀𝑥(𝑥 ∈ (𝐵𝐴) → 𝐶 = ∅) → ∀𝑥((𝑥𝐵𝑦𝐶) → (𝑥𝐴𝑦𝐶)))
151, 14sylbi 216 . . . . . 6 (∀𝑥 ∈ (𝐵𝐴)𝐶 = ∅ → ∀𝑥((𝑥𝐵𝑦𝐶) → (𝑥𝐴𝑦𝐶)))
16 moim 2544 . . . . . 6 (∀𝑥((𝑥𝐵𝑦𝐶) → (𝑥𝐴𝑦𝐶)) → (∃*𝑥(𝑥𝐴𝑦𝐶) → ∃*𝑥(𝑥𝐵𝑦𝐶)))
1715, 16syl 17 . . . . 5 (∀𝑥 ∈ (𝐵𝐴)𝐶 = ∅ → (∃*𝑥(𝑥𝐴𝑦𝐶) → ∃*𝑥(𝑥𝐵𝑦𝐶)))
1817alimdv 1920 . . . 4 (∀𝑥 ∈ (𝐵𝐴)𝐶 = ∅ → (∀𝑦∃*𝑥(𝑥𝐴𝑦𝐶) → ∀𝑦∃*𝑥(𝑥𝐵𝑦𝐶)))
19 dfdisj2 5037 . . . 4 (Disj 𝑥𝐴 𝐶 ↔ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝐶))
20 dfdisj2 5037 . . . 4 (Disj 𝑥𝐵 𝐶 ↔ ∀𝑦∃*𝑥(𝑥𝐵𝑦𝐶))
2118, 19, 203imtr4g 295 . . 3 (∀𝑥 ∈ (𝐵𝐴)𝐶 = ∅ → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
2221adantl 481 . 2 ((𝐴𝐵 ∧ ∀𝑥 ∈ (𝐵𝐴)𝐶 = ∅) → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
23 disjss1 5041 . . 3 (𝐴𝐵 → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶))
2423adantr 480 . 2 ((𝐴𝐵 ∧ ∀𝑥 ∈ (𝐵𝐴)𝐶 = ∅) → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶))
2522, 24impbid 211 1 ((𝐴𝐵 ∧ ∀𝑥 ∈ (𝐵𝐴)𝐶 = ∅) → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wcel 2108  ∃*wmo 2538  wral 3063  cdif 3880  wss 3883  c0 4253  Disj wdisj 5035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rmo 3071  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254  df-disj 5036
This theorem is referenced by:  carsggect  32185
  Copyright terms: Public domain W3C validator