MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfdisj Structured version   Visualization version   GIF version

Theorem nfdisj 5128
Description: Bound-variable hypothesis builder for disjoint collection. Usage of this theorem is discouraged because it depends on ax-13 2375. Use the weaker nfdisjw 5127 when possible. (Contributed by Mario Carneiro, 14-Nov-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfdisj.1 𝑦𝐴
nfdisj.2 𝑦𝐵
Assertion
Ref Expression
nfdisj 𝑦Disj 𝑥𝐴 𝐵

Proof of Theorem nfdisj
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfdisj2 5117 . 2 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑧∃*𝑥(𝑥𝐴𝑧𝐵))
2 nftru 1801 . . . . 5 𝑥
3 nfcvf 2930 . . . . . . . 8 (¬ ∀𝑦 𝑦 = 𝑥𝑦𝑥)
4 nfdisj.1 . . . . . . . . 9 𝑦𝐴
54a1i 11 . . . . . . . 8 (¬ ∀𝑦 𝑦 = 𝑥𝑦𝐴)
63, 5nfeld 2915 . . . . . . 7 (¬ ∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦 𝑥𝐴)
7 nfdisj.2 . . . . . . . . 9 𝑦𝐵
87nfcri 2895 . . . . . . . 8 𝑦 𝑧𝐵
98a1i 11 . . . . . . 7 (¬ ∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦 𝑧𝐵)
106, 9nfand 1895 . . . . . 6 (¬ ∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦(𝑥𝐴𝑧𝐵))
1110adantl 481 . . . . 5 ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → Ⅎ𝑦(𝑥𝐴𝑧𝐵))
122, 11nfmod2 2556 . . . 4 (⊤ → Ⅎ𝑦∃*𝑥(𝑥𝐴𝑧𝐵))
1312mptru 1544 . . 3 𝑦∃*𝑥(𝑥𝐴𝑧𝐵)
1413nfal 2322 . 2 𝑦𝑧∃*𝑥(𝑥𝐴𝑧𝐵)
151, 14nfxfr 1850 1 𝑦Disj 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wal 1535  wtru 1538  wnf 1780  wcel 2106  ∃*wmo 2536  wnfc 2888  Disj wdisj 5115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-13 2375  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781  df-mo 2538  df-cleq 2727  df-clel 2814  df-nfc 2890  df-rmo 3378  df-disj 5116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator