| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfdisj | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for disjoint collection. Usage of this theorem is discouraged because it depends on ax-13 2377. Use the weaker nfdisjw 5103 when possible. (Contributed by Mario Carneiro, 14-Nov-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfdisj.1 | ⊢ Ⅎ𝑦𝐴 |
| nfdisj.2 | ⊢ Ⅎ𝑦𝐵 |
| Ref | Expression |
|---|---|
| nfdisj | ⊢ Ⅎ𝑦Disj 𝑥 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdisj2 5093 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑧∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) | |
| 2 | nftru 1804 | . . . . 5 ⊢ Ⅎ𝑥⊤ | |
| 3 | nfcvf 2926 | . . . . . . . 8 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦𝑥) | |
| 4 | nfdisj.1 | . . . . . . . . 9 ⊢ Ⅎ𝑦𝐴 | |
| 5 | 4 | a1i 11 | . . . . . . . 8 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦𝐴) |
| 6 | 3, 5 | nfeld 2911 | . . . . . . 7 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦 𝑥 ∈ 𝐴) |
| 7 | nfdisj.2 | . . . . . . . . 9 ⊢ Ⅎ𝑦𝐵 | |
| 8 | 7 | nfcri 2891 | . . . . . . . 8 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐵 |
| 9 | 8 | a1i 11 | . . . . . . 7 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦 𝑧 ∈ 𝐵) |
| 10 | 6, 9 | nfand 1897 | . . . . . 6 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) |
| 11 | 10 | adantl 481 | . . . . 5 ⊢ ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) |
| 12 | 2, 11 | nfmod2 2558 | . . . 4 ⊢ (⊤ → Ⅎ𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) |
| 13 | 12 | mptru 1547 | . . 3 ⊢ Ⅎ𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) |
| 14 | 13 | nfal 2324 | . 2 ⊢ Ⅎ𝑦∀𝑧∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) |
| 15 | 1, 14 | nfxfr 1853 | 1 ⊢ Ⅎ𝑦Disj 𝑥 ∈ 𝐴 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∀wal 1538 ⊤wtru 1541 Ⅎwnf 1783 ∈ wcel 2109 ∃*wmo 2538 Ⅎwnfc 2884 Disj wdisj 5091 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2377 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-mo 2540 df-cleq 2728 df-clel 2810 df-nfc 2886 df-rmo 3364 df-disj 5092 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |