Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfdisjw | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for disjoint collection. Version of nfdisj 5052 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Mario Carneiro, 14-Nov-2016.) (Revised by Gino Giotto, 26-Jan-2024.) |
Ref | Expression |
---|---|
nfdisjw.1 | ⊢ Ⅎ𝑦𝐴 |
nfdisjw.2 | ⊢ Ⅎ𝑦𝐵 |
Ref | Expression |
---|---|
nfdisjw | ⊢ Ⅎ𝑦Disj 𝑥 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisj2 5041 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑧∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) | |
2 | nftru 1807 | . . . . 5 ⊢ Ⅎ𝑥⊤ | |
3 | nfcvd 2908 | . . . . . . 7 ⊢ (⊤ → Ⅎ𝑦𝑥) | |
4 | nfdisjw.1 | . . . . . . . 8 ⊢ Ⅎ𝑦𝐴 | |
5 | 4 | a1i 11 | . . . . . . 7 ⊢ (⊤ → Ⅎ𝑦𝐴) |
6 | 3, 5 | nfeld 2918 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑦 𝑥 ∈ 𝐴) |
7 | nfdisjw.2 | . . . . . . . 8 ⊢ Ⅎ𝑦𝐵 | |
8 | 7 | nfcri 2894 | . . . . . . 7 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐵 |
9 | 8 | a1i 11 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑦 𝑧 ∈ 𝐵) |
10 | 6, 9 | nfand 1900 | . . . . 5 ⊢ (⊤ → Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) |
11 | 2, 10 | nfmodv 2559 | . . . 4 ⊢ (⊤ → Ⅎ𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) |
12 | 11 | mptru 1546 | . . 3 ⊢ Ⅎ𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) |
13 | 12 | nfal 2317 | . 2 ⊢ Ⅎ𝑦∀𝑧∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) |
14 | 1, 13 | nfxfr 1855 | 1 ⊢ Ⅎ𝑦Disj 𝑥 ∈ 𝐴 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∀wal 1537 ⊤wtru 1540 Ⅎwnf 1786 ∈ wcel 2106 ∃*wmo 2538 Ⅎwnfc 2887 Disj wdisj 5039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-mo 2540 df-cleq 2730 df-clel 2816 df-nfc 2889 df-rmo 3071 df-disj 5040 |
This theorem is referenced by: disjxiun 5071 |
Copyright terms: Public domain | W3C validator |