| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfdisjw | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for disjoint collection. Version of nfdisj 5069 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Mario Carneiro, 14-Nov-2016.) Avoid ax-13 2372. (Revised by GG, 26-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfdisjw.1 | ⊢ Ⅎ𝑦𝐴 |
| nfdisjw.2 | ⊢ Ⅎ𝑦𝐵 |
| Ref | Expression |
|---|---|
| nfdisjw | ⊢ Ⅎ𝑦Disj 𝑥 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdisj2 5058 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑧∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) | |
| 2 | nftru 1805 | . . . . 5 ⊢ Ⅎ𝑥⊤ | |
| 3 | nfcvd 2895 | . . . . . . 7 ⊢ (⊤ → Ⅎ𝑦𝑥) | |
| 4 | nfdisjw.1 | . . . . . . . 8 ⊢ Ⅎ𝑦𝐴 | |
| 5 | 4 | a1i 11 | . . . . . . 7 ⊢ (⊤ → Ⅎ𝑦𝐴) |
| 6 | 3, 5 | nfeld 2906 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑦 𝑥 ∈ 𝐴) |
| 7 | nfdisjw.2 | . . . . . . . 8 ⊢ Ⅎ𝑦𝐵 | |
| 8 | 7 | nfcri 2886 | . . . . . . 7 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐵 |
| 9 | 8 | a1i 11 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑦 𝑧 ∈ 𝐵) |
| 10 | 6, 9 | nfand 1898 | . . . . 5 ⊢ (⊤ → Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) |
| 11 | 2, 10 | nfmodv 2554 | . . . 4 ⊢ (⊤ → Ⅎ𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) |
| 12 | 11 | mptru 1548 | . . 3 ⊢ Ⅎ𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) |
| 13 | 12 | nfal 2324 | . 2 ⊢ Ⅎ𝑦∀𝑧∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) |
| 14 | 1, 13 | nfxfr 1854 | 1 ⊢ Ⅎ𝑦Disj 𝑥 ∈ 𝐴 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∀wal 1539 ⊤wtru 1542 Ⅎwnf 1784 ∈ wcel 2111 ∃*wmo 2533 Ⅎwnfc 2879 Disj wdisj 5056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-mo 2535 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rmo 3346 df-disj 5057 |
| This theorem is referenced by: disjxiun 5086 |
| Copyright terms: Public domain | W3C validator |