![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfdisjw | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for disjoint collection. Version of nfdisj 5128 with a disjoint variable condition, which does not require ax-13 2375. (Contributed by Mario Carneiro, 14-Nov-2016.) Avoid ax-13 2375. (Revised by GG, 26-Jan-2024.) |
Ref | Expression |
---|---|
nfdisjw.1 | ⊢ Ⅎ𝑦𝐴 |
nfdisjw.2 | ⊢ Ⅎ𝑦𝐵 |
Ref | Expression |
---|---|
nfdisjw | ⊢ Ⅎ𝑦Disj 𝑥 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisj2 5117 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑧∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) | |
2 | nftru 1801 | . . . . 5 ⊢ Ⅎ𝑥⊤ | |
3 | nfcvd 2904 | . . . . . . 7 ⊢ (⊤ → Ⅎ𝑦𝑥) | |
4 | nfdisjw.1 | . . . . . . . 8 ⊢ Ⅎ𝑦𝐴 | |
5 | 4 | a1i 11 | . . . . . . 7 ⊢ (⊤ → Ⅎ𝑦𝐴) |
6 | 3, 5 | nfeld 2915 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑦 𝑥 ∈ 𝐴) |
7 | nfdisjw.2 | . . . . . . . 8 ⊢ Ⅎ𝑦𝐵 | |
8 | 7 | nfcri 2895 | . . . . . . 7 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐵 |
9 | 8 | a1i 11 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑦 𝑧 ∈ 𝐵) |
10 | 6, 9 | nfand 1895 | . . . . 5 ⊢ (⊤ → Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) |
11 | 2, 10 | nfmodv 2557 | . . . 4 ⊢ (⊤ → Ⅎ𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) |
12 | 11 | mptru 1544 | . . 3 ⊢ Ⅎ𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) |
13 | 12 | nfal 2322 | . 2 ⊢ Ⅎ𝑦∀𝑧∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) |
14 | 1, 13 | nfxfr 1850 | 1 ⊢ Ⅎ𝑦Disj 𝑥 ∈ 𝐴 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∀wal 1535 ⊤wtru 1538 Ⅎwnf 1780 ∈ wcel 2106 ∃*wmo 2536 Ⅎwnfc 2888 Disj wdisj 5115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-mo 2538 df-cleq 2727 df-clel 2814 df-nfc 2890 df-rmo 3378 df-disj 5116 |
This theorem is referenced by: disjxiun 5145 |
Copyright terms: Public domain | W3C validator |