MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjss2 Structured version   Visualization version   GIF version

Theorem disjss2 5059
Description: If each element of a collection is contained in a disjoint collection, the original collection is also disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjss2 (∀𝑥𝐴 𝐵𝐶 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐴 𝐵))

Proof of Theorem disjss2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssel 3923 . . . . 5 (𝐵𝐶 → (𝑦𝐵𝑦𝐶))
21ralimi 3069 . . . 4 (∀𝑥𝐴 𝐵𝐶 → ∀𝑥𝐴 (𝑦𝐵𝑦𝐶))
3 rmoim 3694 . . . 4 (∀𝑥𝐴 (𝑦𝐵𝑦𝐶) → (∃*𝑥𝐴 𝑦𝐶 → ∃*𝑥𝐴 𝑦𝐵))
42, 3syl 17 . . 3 (∀𝑥𝐴 𝐵𝐶 → (∃*𝑥𝐴 𝑦𝐶 → ∃*𝑥𝐴 𝑦𝐵))
54alimdv 1917 . 2 (∀𝑥𝐴 𝐵𝐶 → (∀𝑦∃*𝑥𝐴 𝑦𝐶 → ∀𝑦∃*𝑥𝐴 𝑦𝐵))
6 df-disj 5057 . 2 (Disj 𝑥𝐴 𝐶 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐶)
7 df-disj 5057 . 2 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐵)
85, 6, 73imtr4g 296 1 (∀𝑥𝐴 𝐵𝐶 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐴 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  wcel 2111  wral 3047  ∃*wrmo 3345  wss 3897  Disj wdisj 5056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-mo 2535  df-clel 2806  df-ral 3048  df-rmo 3346  df-ss 3914  df-disj 5057
This theorem is referenced by:  disjeq2  5060  0disj  5082  uniioombllem2  25511  uniioombllem4  25514  disjxwwlksn  29882  disjxwwlkn  29891  fusgreghash2wspv  30315  fsumiunss  45623
  Copyright terms: Public domain W3C validator