Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > disjss2 | Structured version Visualization version GIF version |
Description: If each element of a collection is contained in a disjoint collection, the original collection is also disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
disjss2 | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐴 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3919 | . . . . 5 ⊢ (𝐵 ⊆ 𝐶 → (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) | |
2 | 1 | ralimi 3089 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) |
3 | rmoim 3679 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶) → (∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 → ∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 → ∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) |
5 | 4 | alimdv 1923 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 → ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) |
6 | df-disj 5045 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
7 | df-disj 5045 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
8 | 5, 6, 7 | 3imtr4g 296 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐴 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ∈ wcel 2110 ∀wral 3066 ∃*wrmo 3069 ⊆ wss 3892 Disj wdisj 5044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-mo 2542 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rmo 3074 df-v 3433 df-in 3899 df-ss 3909 df-disj 5045 |
This theorem is referenced by: disjeq2 5048 0disj 5071 uniioombllem2 24745 uniioombllem4 24748 disjxwwlksn 28265 disjxwwlkn 28274 fusgreghash2wspv 28695 fsumiunss 43087 |
Copyright terms: Public domain | W3C validator |