MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjss2 Structured version   Visualization version   GIF version

Theorem disjss2 5117
Description: If each element of a collection is contained in a disjoint collection, the original collection is also disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjss2 (∀𝑥𝐴 𝐵𝐶 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐴 𝐵))

Proof of Theorem disjss2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssel 3970 . . . . 5 (𝐵𝐶 → (𝑦𝐵𝑦𝐶))
21ralimi 3072 . . . 4 (∀𝑥𝐴 𝐵𝐶 → ∀𝑥𝐴 (𝑦𝐵𝑦𝐶))
3 rmoim 3732 . . . 4 (∀𝑥𝐴 (𝑦𝐵𝑦𝐶) → (∃*𝑥𝐴 𝑦𝐶 → ∃*𝑥𝐴 𝑦𝐵))
42, 3syl 17 . . 3 (∀𝑥𝐴 𝐵𝐶 → (∃*𝑥𝐴 𝑦𝐶 → ∃*𝑥𝐴 𝑦𝐵))
54alimdv 1911 . 2 (∀𝑥𝐴 𝐵𝐶 → (∀𝑦∃*𝑥𝐴 𝑦𝐶 → ∀𝑦∃*𝑥𝐴 𝑦𝐵))
6 df-disj 5115 . 2 (Disj 𝑥𝐴 𝐶 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐶)
7 df-disj 5115 . 2 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐵)
85, 6, 73imtr4g 295 1 (∀𝑥𝐴 𝐵𝐶 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐴 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1531  wcel 2098  wral 3050  ∃*wrmo 3362  wss 3944  Disj wdisj 5114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1774  df-mo 2528  df-clel 2802  df-ral 3051  df-rmo 3363  df-ss 3961  df-disj 5115
This theorem is referenced by:  disjeq2  5118  0disj  5141  uniioombllem2  25556  uniioombllem4  25559  disjxwwlksn  29787  disjxwwlkn  29796  fusgreghash2wspv  30217  fsumiunss  45101
  Copyright terms: Public domain W3C validator