| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjss2 | Structured version Visualization version GIF version | ||
| Description: If each element of a collection is contained in a disjoint collection, the original collection is also disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| disjss2 | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐴 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3957 | . . . . 5 ⊢ (𝐵 ⊆ 𝐶 → (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) | |
| 2 | 1 | ralimi 3074 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) |
| 3 | rmoim 3728 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶) → (∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 → ∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 → ∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) |
| 5 | 4 | alimdv 1916 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 → ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) |
| 6 | df-disj 5092 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
| 7 | df-disj 5092 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
| 8 | 5, 6, 7 | 3imtr4g 296 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐴 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2109 ∀wral 3052 ∃*wrmo 3363 ⊆ wss 3931 Disj wdisj 5091 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2540 df-clel 2810 df-ral 3053 df-rmo 3364 df-ss 3948 df-disj 5092 |
| This theorem is referenced by: disjeq2 5095 0disj 5117 uniioombllem2 25541 uniioombllem4 25544 disjxwwlksn 29891 disjxwwlkn 29900 fusgreghash2wspv 30321 fsumiunss 45584 |
| Copyright terms: Public domain | W3C validator |