MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vitalilem3 Structured version   Visualization version   GIF version

Theorem vitalilem3 25509
Description: Lemma for vitali 25512. (Contributed by Mario Carneiro, 16-Jun-2014.)
Hypotheses
Ref Expression
vitali.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)}
vitali.2 𝑆 = ((0[,]1) / )
vitali.3 (𝜑𝐹 Fn 𝑆)
vitali.4 (𝜑 → ∀𝑧𝑆 (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧))
vitali.5 (𝜑𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)))
vitali.6 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹})
vitali.7 (𝜑 → ¬ ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol))
Assertion
Ref Expression
vitalilem3 (𝜑Disj 𝑚 ∈ ℕ (𝑇𝑚))
Distinct variable groups:   𝑚,𝑛,𝑠,𝑥,𝑦,𝑧,𝐺   𝜑,𝑚,𝑛,𝑥,𝑧   𝑧,𝑆   𝑇,𝑚,𝑥   𝑚,𝐹,𝑛,𝑠,𝑥,𝑦,𝑧   ,𝑚,𝑛,𝑠,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑠)   𝑆(𝑥,𝑦,𝑚,𝑛,𝑠)   𝑇(𝑦,𝑧,𝑛,𝑠)

Proof of Theorem vitalilem3
Dummy variables 𝑘 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprlr 779 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → 𝑤 ∈ (𝑇𝑚))
2 simprll 778 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → 𝑚 ∈ ℕ)
3 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (𝐺𝑛) = (𝐺𝑚))
43oveq2d 7365 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (𝑠 − (𝐺𝑛)) = (𝑠 − (𝐺𝑚)))
54eleq1d 2813 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ((𝑠 − (𝐺𝑛)) ∈ ran 𝐹 ↔ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹))
65rabbidv 3402 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹})
7 vitali.6 . . . . . . . . . . . . . 14 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹})
8 reex 11100 . . . . . . . . . . . . . . 15 ℝ ∈ V
98rabex 5278 . . . . . . . . . . . . . 14 {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹} ∈ V
106, 7, 9fvmpt 6930 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → (𝑇𝑚) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹})
112, 10syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → (𝑇𝑚) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹})
121, 11eleqtrd 2830 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → 𝑤 ∈ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹})
13 oveq1 7356 . . . . . . . . . . . . 13 (𝑠 = 𝑤 → (𝑠 − (𝐺𝑚)) = (𝑤 − (𝐺𝑚)))
1413eleq1d 2813 . . . . . . . . . . . 12 (𝑠 = 𝑤 → ((𝑠 − (𝐺𝑚)) ∈ ran 𝐹 ↔ (𝑤 − (𝐺𝑚)) ∈ ran 𝐹))
1514elrab 3648 . . . . . . . . . . 11 (𝑤 ∈ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹} ↔ (𝑤 ∈ ℝ ∧ (𝑤 − (𝐺𝑚)) ∈ ran 𝐹))
1612, 15sylib 218 . . . . . . . . . 10 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → (𝑤 ∈ ℝ ∧ (𝑤 − (𝐺𝑚)) ∈ ran 𝐹))
1716simpld 494 . . . . . . . . 9 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → 𝑤 ∈ ℝ)
1817recnd 11143 . . . . . . . 8 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → 𝑤 ∈ ℂ)
19 vitali.5 . . . . . . . . . . . . 13 (𝜑𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)))
20 f1of 6764 . . . . . . . . . . . . 13 (𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) → 𝐺:ℕ⟶(ℚ ∩ (-1[,]1)))
2119, 20syl 17 . . . . . . . . . . . 12 (𝜑𝐺:ℕ⟶(ℚ ∩ (-1[,]1)))
22 inss1 4188 . . . . . . . . . . . 12 (ℚ ∩ (-1[,]1)) ⊆ ℚ
23 fss 6668 . . . . . . . . . . . 12 ((𝐺:ℕ⟶(ℚ ∩ (-1[,]1)) ∧ (ℚ ∩ (-1[,]1)) ⊆ ℚ) → 𝐺:ℕ⟶ℚ)
2421, 22, 23sylancl 586 . . . . . . . . . . 11 (𝜑𝐺:ℕ⟶ℚ)
2524adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → 𝐺:ℕ⟶ℚ)
2625, 2ffvelcdmd 7019 . . . . . . . . 9 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → (𝐺𝑚) ∈ ℚ)
27 qcn 12864 . . . . . . . . 9 ((𝐺𝑚) ∈ ℚ → (𝐺𝑚) ∈ ℂ)
2826, 27syl 17 . . . . . . . 8 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → (𝐺𝑚) ∈ ℂ)
29 simprrl 780 . . . . . . . . . 10 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → 𝑘 ∈ ℕ)
3025, 29ffvelcdmd 7019 . . . . . . . . 9 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → (𝐺𝑘) ∈ ℚ)
31 qcn 12864 . . . . . . . . 9 ((𝐺𝑘) ∈ ℚ → (𝐺𝑘) ∈ ℂ)
3230, 31syl 17 . . . . . . . 8 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → (𝐺𝑘) ∈ ℂ)
33 vitali.1 . . . . . . . . . . . . 13 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)}
3433vitalilem1 25507 . . . . . . . . . . . 12 Er (0[,]1)
3534a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → Er (0[,]1))
36 vitali.2 . . . . . . . . . . . . . . . 16 𝑆 = ((0[,]1) / )
37 vitali.3 . . . . . . . . . . . . . . . 16 (𝜑𝐹 Fn 𝑆)
38 vitali.4 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑧𝑆 (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧))
39 vitali.7 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol))
4033, 36, 37, 38, 19, 7, 39vitalilem2 25508 . . . . . . . . . . . . . . 15 (𝜑 → (ran 𝐹 ⊆ (0[,]1) ∧ (0[,]1) ⊆ 𝑚 ∈ ℕ (𝑇𝑚) ∧ 𝑚 ∈ ℕ (𝑇𝑚) ⊆ (-1[,]2)))
4140simp1d 1142 . . . . . . . . . . . . . 14 (𝜑 → ran 𝐹 ⊆ (0[,]1))
4241adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → ran 𝐹 ⊆ (0[,]1))
4316simprd 495 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → (𝑤 − (𝐺𝑚)) ∈ ran 𝐹)
4442, 43sseldd 3936 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → (𝑤 − (𝐺𝑚)) ∈ (0[,]1))
45 simprrr 781 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → 𝑤 ∈ (𝑇𝑘))
46 fveq2 6822 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
4746oveq2d 7365 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑘 → (𝑠 − (𝐺𝑛)) = (𝑠 − (𝐺𝑘)))
4847eleq1d 2813 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → ((𝑠 − (𝐺𝑛)) ∈ ran 𝐹 ↔ (𝑠 − (𝐺𝑘)) ∈ ran 𝐹))
4948rabbidv 3402 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑘)) ∈ ran 𝐹})
508rabex 5278 . . . . . . . . . . . . . . . . . 18 {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑘)) ∈ ran 𝐹} ∈ V
5149, 7, 50fvmpt 6930 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝑇𝑘) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑘)) ∈ ran 𝐹})
5229, 51syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → (𝑇𝑘) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑘)) ∈ ran 𝐹})
5345, 52eleqtrd 2830 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → 𝑤 ∈ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑘)) ∈ ran 𝐹})
54 oveq1 7356 . . . . . . . . . . . . . . . . 17 (𝑠 = 𝑤 → (𝑠 − (𝐺𝑘)) = (𝑤 − (𝐺𝑘)))
5554eleq1d 2813 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑤 → ((𝑠 − (𝐺𝑘)) ∈ ran 𝐹 ↔ (𝑤 − (𝐺𝑘)) ∈ ran 𝐹))
5655elrab 3648 . . . . . . . . . . . . . . 15 (𝑤 ∈ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑘)) ∈ ran 𝐹} ↔ (𝑤 ∈ ℝ ∧ (𝑤 − (𝐺𝑘)) ∈ ran 𝐹))
5753, 56sylib 218 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → (𝑤 ∈ ℝ ∧ (𝑤 − (𝐺𝑘)) ∈ ran 𝐹))
5857simprd 495 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → (𝑤 − (𝐺𝑘)) ∈ ran 𝐹)
5942, 58sseldd 3936 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → (𝑤 − (𝐺𝑘)) ∈ (0[,]1))
6018, 28, 32nnncan1d 11509 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → ((𝑤 − (𝐺𝑚)) − (𝑤 − (𝐺𝑘))) = ((𝐺𝑘) − (𝐺𝑚)))
61 qsubcl 12869 . . . . . . . . . . . . . 14 (((𝐺𝑘) ∈ ℚ ∧ (𝐺𝑚) ∈ ℚ) → ((𝐺𝑘) − (𝐺𝑚)) ∈ ℚ)
6230, 26, 61syl2anc 584 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → ((𝐺𝑘) − (𝐺𝑚)) ∈ ℚ)
6360, 62eqeltrd 2828 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → ((𝑤 − (𝐺𝑚)) − (𝑤 − (𝐺𝑘))) ∈ ℚ)
64 oveq12 7358 . . . . . . . . . . . . . 14 ((𝑥 = (𝑤 − (𝐺𝑚)) ∧ 𝑦 = (𝑤 − (𝐺𝑘))) → (𝑥𝑦) = ((𝑤 − (𝐺𝑚)) − (𝑤 − (𝐺𝑘))))
6564eleq1d 2813 . . . . . . . . . . . . 13 ((𝑥 = (𝑤 − (𝐺𝑚)) ∧ 𝑦 = (𝑤 − (𝐺𝑘))) → ((𝑥𝑦) ∈ ℚ ↔ ((𝑤 − (𝐺𝑚)) − (𝑤 − (𝐺𝑘))) ∈ ℚ))
6665, 33brab2a 5712 . . . . . . . . . . . 12 ((𝑤 − (𝐺𝑚)) (𝑤 − (𝐺𝑘)) ↔ (((𝑤 − (𝐺𝑚)) ∈ (0[,]1) ∧ (𝑤 − (𝐺𝑘)) ∈ (0[,]1)) ∧ ((𝑤 − (𝐺𝑚)) − (𝑤 − (𝐺𝑘))) ∈ ℚ))
6744, 59, 63, 66syl21anbrc 1345 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → (𝑤 − (𝐺𝑚)) (𝑤 − (𝐺𝑘)))
6835, 67erthi 8681 . . . . . . . . . 10 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → [(𝑤 − (𝐺𝑚))] = [(𝑤 − (𝐺𝑘))] )
6968fveq2d 6826 . . . . . . . . 9 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → (𝐹‘[(𝑤 − (𝐺𝑚))] ) = (𝐹‘[(𝑤 − (𝐺𝑘))] ))
70 eceq1 8664 . . . . . . . . . . . 12 (𝑧 = (𝑤 − (𝐺𝑚)) → [𝑧] = [(𝑤 − (𝐺𝑚))] )
7170fveq2d 6826 . . . . . . . . . . 11 (𝑧 = (𝑤 − (𝐺𝑚)) → (𝐹‘[𝑧] ) = (𝐹‘[(𝑤 − (𝐺𝑚))] ))
72 id 22 . . . . . . . . . . 11 (𝑧 = (𝑤 − (𝐺𝑚)) → 𝑧 = (𝑤 − (𝐺𝑚)))
7371, 72eqeq12d 2745 . . . . . . . . . 10 (𝑧 = (𝑤 − (𝐺𝑚)) → ((𝐹‘[𝑧] ) = 𝑧 ↔ (𝐹‘[(𝑤 − (𝐺𝑚))] ) = (𝑤 − (𝐺𝑚))))
74 fveq2 6822 . . . . . . . . . . . . . . . . 17 ([𝑣] = 𝑤 → (𝐹‘[𝑣] ) = (𝐹𝑤))
7574eceq1d 8665 . . . . . . . . . . . . . . . 16 ([𝑣] = 𝑤 → [(𝐹‘[𝑣] )] = [(𝐹𝑤)] )
7675fveq2d 6826 . . . . . . . . . . . . . . 15 ([𝑣] = 𝑤 → (𝐹‘[(𝐹‘[𝑣] )] ) = (𝐹‘[(𝐹𝑤)] ))
7776, 74eqeq12d 2745 . . . . . . . . . . . . . 14 ([𝑣] = 𝑤 → ((𝐹‘[(𝐹‘[𝑣] )] ) = (𝐹‘[𝑣] ) ↔ (𝐹‘[(𝐹𝑤)] ) = (𝐹𝑤)))
7834a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑣 ∈ (0[,]1)) → Er (0[,]1))
79 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑣 ∈ (0[,]1)) → 𝑣 ∈ (0[,]1))
80 erdm 8635 . . . . . . . . . . . . . . . . . . . . . . 23 ( Er (0[,]1) → dom = (0[,]1))
8134, 80ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 dom = (0[,]1)
8281eleq2i 2820 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 ∈ dom 𝑣 ∈ (0[,]1))
83 ecdmn0 8677 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 ∈ dom ↔ [𝑣] ≠ ∅)
8482, 83bitr3i 277 . . . . . . . . . . . . . . . . . . . 20 (𝑣 ∈ (0[,]1) ↔ [𝑣] ≠ ∅)
8579, 84sylib 218 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑣 ∈ (0[,]1)) → [𝑣] ≠ ∅)
86 neeq1 2987 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = [𝑣] → (𝑧 ≠ ∅ ↔ [𝑣] ≠ ∅))
87 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = [𝑣] → (𝐹𝑧) = (𝐹‘[𝑣] ))
88 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = [𝑣] 𝑧 = [𝑣] )
8987, 88eleq12d 2822 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = [𝑣] → ((𝐹𝑧) ∈ 𝑧 ↔ (𝐹‘[𝑣] ) ∈ [𝑣] ))
9086, 89imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = [𝑣] → ((𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧) ↔ ([𝑣] ≠ ∅ → (𝐹‘[𝑣] ) ∈ [𝑣] )))
9138adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑣 ∈ (0[,]1)) → ∀𝑧𝑆 (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧))
92 ovex 7382 . . . . . . . . . . . . . . . . . . . . . . . 24 (0[,]1) ∈ V
93 erex 8649 . . . . . . . . . . . . . . . . . . . . . . . 24 ( Er (0[,]1) → ((0[,]1) ∈ V → ∈ V))
9434, 92, 93mp2 9 . . . . . . . . . . . . . . . . . . . . . . 23 ∈ V
9594ecelqsi 8697 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 ∈ (0[,]1) → [𝑣] ∈ ((0[,]1) / ))
9695, 36eleqtrrdi 2839 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 ∈ (0[,]1) → [𝑣] 𝑆)
9796adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑣 ∈ (0[,]1)) → [𝑣] 𝑆)
9890, 91, 97rspcdva 3578 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑣 ∈ (0[,]1)) → ([𝑣] ≠ ∅ → (𝐹‘[𝑣] ) ∈ [𝑣] ))
9985, 98mpd 15 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑣 ∈ (0[,]1)) → (𝐹‘[𝑣] ) ∈ [𝑣] )
100 fvex 6835 . . . . . . . . . . . . . . . . . . 19 (𝐹‘[𝑣] ) ∈ V
101 vex 3440 . . . . . . . . . . . . . . . . . . 19 𝑣 ∈ V
102100, 101elec 8671 . . . . . . . . . . . . . . . . . 18 ((𝐹‘[𝑣] ) ∈ [𝑣] 𝑣 (𝐹‘[𝑣] ))
10399, 102sylib 218 . . . . . . . . . . . . . . . . 17 ((𝜑𝑣 ∈ (0[,]1)) → 𝑣 (𝐹‘[𝑣] ))
10478, 103erthi 8681 . . . . . . . . . . . . . . . 16 ((𝜑𝑣 ∈ (0[,]1)) → [𝑣] = [(𝐹‘[𝑣] )] )
105104eqcomd 2735 . . . . . . . . . . . . . . 15 ((𝜑𝑣 ∈ (0[,]1)) → [(𝐹‘[𝑣] )] = [𝑣] )
106105fveq2d 6826 . . . . . . . . . . . . . 14 ((𝜑𝑣 ∈ (0[,]1)) → (𝐹‘[(𝐹‘[𝑣] )] ) = (𝐹‘[𝑣] ))
10736, 77, 106ectocld 8709 . . . . . . . . . . . . 13 ((𝜑𝑤𝑆) → (𝐹‘[(𝐹𝑤)] ) = (𝐹𝑤))
108107ralrimiva 3121 . . . . . . . . . . . 12 (𝜑 → ∀𝑤𝑆 (𝐹‘[(𝐹𝑤)] ) = (𝐹𝑤))
109 eceq1 8664 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐹𝑤) → [𝑧] = [(𝐹𝑤)] )
110109fveq2d 6826 . . . . . . . . . . . . . . 15 (𝑧 = (𝐹𝑤) → (𝐹‘[𝑧] ) = (𝐹‘[(𝐹𝑤)] ))
111 id 22 . . . . . . . . . . . . . . 15 (𝑧 = (𝐹𝑤) → 𝑧 = (𝐹𝑤))
112110, 111eqeq12d 2745 . . . . . . . . . . . . . 14 (𝑧 = (𝐹𝑤) → ((𝐹‘[𝑧] ) = 𝑧 ↔ (𝐹‘[(𝐹𝑤)] ) = (𝐹𝑤)))
113112ralrn 7022 . . . . . . . . . . . . 13 (𝐹 Fn 𝑆 → (∀𝑧 ∈ ran 𝐹(𝐹‘[𝑧] ) = 𝑧 ↔ ∀𝑤𝑆 (𝐹‘[(𝐹𝑤)] ) = (𝐹𝑤)))
11437, 113syl 17 . . . . . . . . . . . 12 (𝜑 → (∀𝑧 ∈ ran 𝐹(𝐹‘[𝑧] ) = 𝑧 ↔ ∀𝑤𝑆 (𝐹‘[(𝐹𝑤)] ) = (𝐹𝑤)))
115108, 114mpbird 257 . . . . . . . . . . 11 (𝜑 → ∀𝑧 ∈ ran 𝐹(𝐹‘[𝑧] ) = 𝑧)
116115adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → ∀𝑧 ∈ ran 𝐹(𝐹‘[𝑧] ) = 𝑧)
11773, 116, 43rspcdva 3578 . . . . . . . . 9 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → (𝐹‘[(𝑤 − (𝐺𝑚))] ) = (𝑤 − (𝐺𝑚)))
118 eceq1 8664 . . . . . . . . . . . 12 (𝑧 = (𝑤 − (𝐺𝑘)) → [𝑧] = [(𝑤 − (𝐺𝑘))] )
119118fveq2d 6826 . . . . . . . . . . 11 (𝑧 = (𝑤 − (𝐺𝑘)) → (𝐹‘[𝑧] ) = (𝐹‘[(𝑤 − (𝐺𝑘))] ))
120 id 22 . . . . . . . . . . 11 (𝑧 = (𝑤 − (𝐺𝑘)) → 𝑧 = (𝑤 − (𝐺𝑘)))
121119, 120eqeq12d 2745 . . . . . . . . . 10 (𝑧 = (𝑤 − (𝐺𝑘)) → ((𝐹‘[𝑧] ) = 𝑧 ↔ (𝐹‘[(𝑤 − (𝐺𝑘))] ) = (𝑤 − (𝐺𝑘))))
122121, 116, 58rspcdva 3578 . . . . . . . . 9 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → (𝐹‘[(𝑤 − (𝐺𝑘))] ) = (𝑤 − (𝐺𝑘)))
12369, 117, 1223eqtr3d 2772 . . . . . . . 8 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → (𝑤 − (𝐺𝑚)) = (𝑤 − (𝐺𝑘)))
12418, 28, 32, 123subcand 11516 . . . . . . 7 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → (𝐺𝑚) = (𝐺𝑘))
12519adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → 𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)))
126 f1of1 6763 . . . . . . . . 9 (𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) → 𝐺:ℕ–1-1→(ℚ ∩ (-1[,]1)))
127125, 126syl 17 . . . . . . . 8 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → 𝐺:ℕ–1-1→(ℚ ∩ (-1[,]1)))
128 f1fveq 7199 . . . . . . . 8 ((𝐺:ℕ–1-1→(ℚ ∩ (-1[,]1)) ∧ (𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((𝐺𝑚) = (𝐺𝑘) ↔ 𝑚 = 𝑘))
129127, 2, 29, 128syl12anc 836 . . . . . . 7 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → ((𝐺𝑚) = (𝐺𝑘) ↔ 𝑚 = 𝑘))
130124, 129mpbid 232 . . . . . 6 ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘)))) → 𝑚 = 𝑘)
131130ex 412 . . . . 5 (𝜑 → (((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘))) → 𝑚 = 𝑘))
132131alrimivv 1928 . . . 4 (𝜑 → ∀𝑚𝑘(((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘))) → 𝑚 = 𝑘))
133 eleq1w 2811 . . . . . 6 (𝑚 = 𝑘 → (𝑚 ∈ ℕ ↔ 𝑘 ∈ ℕ))
134 fveq2 6822 . . . . . . 7 (𝑚 = 𝑘 → (𝑇𝑚) = (𝑇𝑘))
135134eleq2d 2814 . . . . . 6 (𝑚 = 𝑘 → (𝑤 ∈ (𝑇𝑚) ↔ 𝑤 ∈ (𝑇𝑘)))
136133, 135anbi12d 632 . . . . 5 (𝑚 = 𝑘 → ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ↔ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘))))
137136mo4 2559 . . . 4 (∃*𝑚(𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ↔ ∀𝑚𝑘(((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑘))) → 𝑚 = 𝑘))
138132, 137sylibr 234 . . 3 (𝜑 → ∃*𝑚(𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)))
139138alrimiv 1927 . 2 (𝜑 → ∀𝑤∃*𝑚(𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)))
140 dfdisj2 5061 . 2 (Disj 𝑚 ∈ ℕ (𝑇𝑚) ↔ ∀𝑤∃*𝑚(𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇𝑚)))
141139, 140sylibr 234 1 (𝜑Disj 𝑚 ∈ ℕ (𝑇𝑚))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  ∃*wmo 2531  wne 2925  wral 3044  {crab 3394  Vcvv 3436  cdif 3900  cin 3902  wss 3903  c0 4284  𝒫 cpw 4551   ciun 4941  Disj wdisj 5059   class class class wbr 5092  {copab 5154  cmpt 5173  dom cdm 5619  ran crn 5620   Fn wfn 6477  wf 6478  1-1wf1 6479  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349   Er wer 8622  [cec 8623   / cqs 8624  cc 11007  cr 11008  0cc0 11009  1c1 11010  cmin 11347  -cneg 11348  cn 12128  2c2 12183  cq 12849  [,]cicc 13251  volcvol 25362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-ec 8627  df-qs 8631  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-q 12850  df-icc 13255
This theorem is referenced by:  vitalilem4  25510
  Copyright terms: Public domain W3C validator