Step | Hyp | Ref
| Expression |
1 | | simprlr 798 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → 𝑤 ∈ (𝑇‘𝑚)) |
2 | | simprll 797 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → 𝑚 ∈ ℕ) |
3 | | fveq2 6437 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑚 → (𝐺‘𝑛) = (𝐺‘𝑚)) |
4 | 3 | oveq2d 6926 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑚 → (𝑠 − (𝐺‘𝑛)) = (𝑠 − (𝐺‘𝑚))) |
5 | 4 | eleq1d 2891 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑚 → ((𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹 ↔ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹)) |
6 | 5 | rabbidv 3402 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑚 → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹}) |
7 | | vitali.6 |
. . . . . . . . . . . . . 14
⊢ 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹}) |
8 | | reex 10350 |
. . . . . . . . . . . . . . 15
⊢ ℝ
∈ V |
9 | 8 | rabex 5039 |
. . . . . . . . . . . . . 14
⊢ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹} ∈ V |
10 | 6, 7, 9 | fvmpt 6533 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ → (𝑇‘𝑚) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹}) |
11 | 2, 10 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝑇‘𝑚) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹}) |
12 | 1, 11 | eleqtrd 2908 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → 𝑤 ∈ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹}) |
13 | | oveq1 6917 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑤 → (𝑠 − (𝐺‘𝑚)) = (𝑤 − (𝐺‘𝑚))) |
14 | 13 | eleq1d 2891 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑤 → ((𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹 ↔ (𝑤 − (𝐺‘𝑚)) ∈ ran 𝐹)) |
15 | 14 | elrab 3585 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹} ↔ (𝑤 ∈ ℝ ∧ (𝑤 − (𝐺‘𝑚)) ∈ ran 𝐹)) |
16 | 12, 15 | sylib 210 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝑤 ∈ ℝ ∧ (𝑤 − (𝐺‘𝑚)) ∈ ran 𝐹)) |
17 | 16 | simpld 490 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → 𝑤 ∈ ℝ) |
18 | 17 | recnd 10392 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → 𝑤 ∈ ℂ) |
19 | | vitali.5 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))) |
20 | | f1of 6382 |
. . . . . . . . . . . . 13
⊢ (𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) → 𝐺:ℕ⟶(ℚ ∩
(-1[,]1))) |
21 | 19, 20 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺:ℕ⟶(ℚ ∩
(-1[,]1))) |
22 | | inss1 4059 |
. . . . . . . . . . . 12
⊢ (ℚ
∩ (-1[,]1)) ⊆ ℚ |
23 | | fss 6295 |
. . . . . . . . . . . 12
⊢ ((𝐺:ℕ⟶(ℚ ∩
(-1[,]1)) ∧ (ℚ ∩ (-1[,]1)) ⊆ ℚ) → 𝐺:ℕ⟶ℚ) |
24 | 21, 22, 23 | sylancl 580 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺:ℕ⟶ℚ) |
25 | 24 | adantr 474 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → 𝐺:ℕ⟶ℚ) |
26 | 25, 2 | ffvelrnd 6614 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝐺‘𝑚) ∈ ℚ) |
27 | | qcn 12092 |
. . . . . . . . 9
⊢ ((𝐺‘𝑚) ∈ ℚ → (𝐺‘𝑚) ∈ ℂ) |
28 | 26, 27 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝐺‘𝑚) ∈ ℂ) |
29 | | simprrl 799 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → 𝑘 ∈ ℕ) |
30 | 25, 29 | ffvelrnd 6614 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝐺‘𝑘) ∈ ℚ) |
31 | | qcn 12092 |
. . . . . . . . 9
⊢ ((𝐺‘𝑘) ∈ ℚ → (𝐺‘𝑘) ∈ ℂ) |
32 | 30, 31 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝐺‘𝑘) ∈ ℂ) |
33 | | vitali.1 |
. . . . . . . . . . . . 13
⊢ ∼ =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥 − 𝑦) ∈ ℚ)} |
34 | 33 | vitalilem1 23781 |
. . . . . . . . . . . 12
⊢ ∼ Er
(0[,]1) |
35 | 34 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → ∼ Er
(0[,]1)) |
36 | | vitali.2 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑆 = ((0[,]1) / ∼
) |
37 | | vitali.3 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐹 Fn 𝑆) |
38 | | vitali.4 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑧 ∈ 𝑆 (𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧)) |
39 | | vitali.7 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ¬ ran 𝐹 ∈ (𝒫 ℝ
∖ dom vol)) |
40 | 33, 36, 37, 38, 19, 7, 39 | vitalilem2 23782 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (ran 𝐹 ⊆ (0[,]1) ∧ (0[,]1) ⊆
∪ 𝑚 ∈ ℕ (𝑇‘𝑚) ∧ ∪
𝑚 ∈ ℕ (𝑇‘𝑚) ⊆ (-1[,]2))) |
41 | 40 | simp1d 1176 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ran 𝐹 ⊆ (0[,]1)) |
42 | 41 | adantr 474 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → ran 𝐹 ⊆ (0[,]1)) |
43 | 16 | simprd 491 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝑤 − (𝐺‘𝑚)) ∈ ran 𝐹) |
44 | 42, 43 | sseldd 3828 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝑤 − (𝐺‘𝑚)) ∈ (0[,]1)) |
45 | | simprrr 800 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → 𝑤 ∈ (𝑇‘𝑘)) |
46 | | fveq2 6437 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = 𝑘 → (𝐺‘𝑛) = (𝐺‘𝑘)) |
47 | 46 | oveq2d 6926 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑘 → (𝑠 − (𝐺‘𝑛)) = (𝑠 − (𝐺‘𝑘))) |
48 | 47 | eleq1d 2891 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 𝑘 → ((𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹 ↔ (𝑠 − (𝐺‘𝑘)) ∈ ran 𝐹)) |
49 | 48 | rabbidv 3402 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑘 → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑘)) ∈ ran 𝐹}) |
50 | 8 | rabex 5039 |
. . . . . . . . . . . . . . . . . . 19
⊢ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑘)) ∈ ran 𝐹} ∈ V |
51 | 49, 7, 50 | fvmpt 6533 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℕ → (𝑇‘𝑘) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑘)) ∈ ran 𝐹}) |
52 | 29, 51 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝑇‘𝑘) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑘)) ∈ ran 𝐹}) |
53 | 45, 52 | eleqtrd 2908 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → 𝑤 ∈ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑘)) ∈ ran 𝐹}) |
54 | | oveq1 6917 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 = 𝑤 → (𝑠 − (𝐺‘𝑘)) = (𝑤 − (𝐺‘𝑘))) |
55 | 54 | eleq1d 2891 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 = 𝑤 → ((𝑠 − (𝐺‘𝑘)) ∈ ran 𝐹 ↔ (𝑤 − (𝐺‘𝑘)) ∈ ran 𝐹)) |
56 | 55 | elrab 3585 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑘)) ∈ ran 𝐹} ↔ (𝑤 ∈ ℝ ∧ (𝑤 − (𝐺‘𝑘)) ∈ ran 𝐹)) |
57 | 53, 56 | sylib 210 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝑤 ∈ ℝ ∧ (𝑤 − (𝐺‘𝑘)) ∈ ran 𝐹)) |
58 | 57 | simprd 491 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝑤 − (𝐺‘𝑘)) ∈ ran 𝐹) |
59 | 42, 58 | sseldd 3828 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝑤 − (𝐺‘𝑘)) ∈ (0[,]1)) |
60 | 44, 59 | jca 507 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → ((𝑤 − (𝐺‘𝑚)) ∈ (0[,]1) ∧ (𝑤 − (𝐺‘𝑘)) ∈ (0[,]1))) |
61 | 18, 28, 32 | nnncan1d 10754 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → ((𝑤 − (𝐺‘𝑚)) − (𝑤 − (𝐺‘𝑘))) = ((𝐺‘𝑘) − (𝐺‘𝑚))) |
62 | | qsubcl 12097 |
. . . . . . . . . . . . . 14
⊢ (((𝐺‘𝑘) ∈ ℚ ∧ (𝐺‘𝑚) ∈ ℚ) → ((𝐺‘𝑘) − (𝐺‘𝑚)) ∈ ℚ) |
63 | 30, 26, 62 | syl2anc 579 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → ((𝐺‘𝑘) − (𝐺‘𝑚)) ∈ ℚ) |
64 | 61, 63 | eqeltrd 2906 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → ((𝑤 − (𝐺‘𝑚)) − (𝑤 − (𝐺‘𝑘))) ∈ ℚ) |
65 | | oveq12 6919 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = (𝑤 − (𝐺‘𝑚)) ∧ 𝑦 = (𝑤 − (𝐺‘𝑘))) → (𝑥 − 𝑦) = ((𝑤 − (𝐺‘𝑚)) − (𝑤 − (𝐺‘𝑘)))) |
66 | 65 | eleq1d 2891 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = (𝑤 − (𝐺‘𝑚)) ∧ 𝑦 = (𝑤 − (𝐺‘𝑘))) → ((𝑥 − 𝑦) ∈ ℚ ↔ ((𝑤 − (𝐺‘𝑚)) − (𝑤 − (𝐺‘𝑘))) ∈ ℚ)) |
67 | 66, 33 | brab2a 5433 |
. . . . . . . . . . . 12
⊢ ((𝑤 − (𝐺‘𝑚)) ∼ (𝑤 − (𝐺‘𝑘)) ↔ (((𝑤 − (𝐺‘𝑚)) ∈ (0[,]1) ∧ (𝑤 − (𝐺‘𝑘)) ∈ (0[,]1)) ∧ ((𝑤 − (𝐺‘𝑚)) − (𝑤 − (𝐺‘𝑘))) ∈ ℚ)) |
68 | 60, 64, 67 | sylanbrc 578 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝑤 − (𝐺‘𝑚)) ∼ (𝑤 − (𝐺‘𝑘))) |
69 | 35, 68 | erthi 8063 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → [(𝑤 − (𝐺‘𝑚))] ∼ = [(𝑤 − (𝐺‘𝑘))] ∼ ) |
70 | 69 | fveq2d 6441 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝐹‘[(𝑤 − (𝐺‘𝑚))] ∼ ) = (𝐹‘[(𝑤 − (𝐺‘𝑘))] ∼ )) |
71 | | eceq1 8052 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝑤 − (𝐺‘𝑚)) → [𝑧] ∼ = [(𝑤 − (𝐺‘𝑚))] ∼ ) |
72 | 71 | fveq2d 6441 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑤 − (𝐺‘𝑚)) → (𝐹‘[𝑧] ∼ ) = (𝐹‘[(𝑤 − (𝐺‘𝑚))] ∼ )) |
73 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑤 − (𝐺‘𝑚)) → 𝑧 = (𝑤 − (𝐺‘𝑚))) |
74 | 72, 73 | eqeq12d 2840 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑤 − (𝐺‘𝑚)) → ((𝐹‘[𝑧] ∼ ) = 𝑧 ↔ (𝐹‘[(𝑤 − (𝐺‘𝑚))] ∼ ) = (𝑤 − (𝐺‘𝑚)))) |
75 | | fveq2 6437 |
. . . . . . . . . . . . . . . . 17
⊢ ([𝑣] ∼ = 𝑤 → (𝐹‘[𝑣] ∼ ) = (𝐹‘𝑤)) |
76 | 75 | eceq1d 8053 |
. . . . . . . . . . . . . . . 16
⊢ ([𝑣] ∼ = 𝑤 → [(𝐹‘[𝑣] ∼ )] ∼ =
[(𝐹‘𝑤)] ∼ ) |
77 | 76 | fveq2d 6441 |
. . . . . . . . . . . . . . 15
⊢ ([𝑣] ∼ = 𝑤 → (𝐹‘[(𝐹‘[𝑣] ∼ )] ∼ ) =
(𝐹‘[(𝐹‘𝑤)] ∼ )) |
78 | 77, 75 | eqeq12d 2840 |
. . . . . . . . . . . . . 14
⊢ ([𝑣] ∼ = 𝑤 → ((𝐹‘[(𝐹‘[𝑣] ∼ )] ∼ ) =
(𝐹‘[𝑣] ∼ ) ↔ (𝐹‘[(𝐹‘𝑤)] ∼ ) = (𝐹‘𝑤))) |
79 | 34 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → ∼ Er
(0[,]1)) |
80 | | simpr 479 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → 𝑣 ∈ (0[,]1)) |
81 | | erdm 8024 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ( ∼ Er
(0[,]1) → dom ∼ =
(0[,]1)) |
82 | 34, 81 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ dom ∼ =
(0[,]1) |
83 | 82 | eleq2i 2898 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 ∈ dom ∼ ↔ 𝑣 ∈
(0[,]1)) |
84 | | ecdmn0 8059 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 ∈ dom ∼ ↔ [𝑣] ∼ ≠
∅) |
85 | 83, 84 | bitr3i 269 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑣 ∈ (0[,]1) ↔ [𝑣] ∼ ≠
∅) |
86 | 80, 85 | sylib 210 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → [𝑣] ∼ ≠
∅) |
87 | | neeq1 3061 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = [𝑣] ∼ → (𝑧 ≠ ∅ ↔ [𝑣] ∼ ≠
∅)) |
88 | | fveq2 6437 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 = [𝑣] ∼ → (𝐹‘𝑧) = (𝐹‘[𝑣] ∼ )) |
89 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 = [𝑣] ∼ → 𝑧 = [𝑣] ∼ ) |
90 | 88, 89 | eleq12d 2900 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = [𝑣] ∼ → ((𝐹‘𝑧) ∈ 𝑧 ↔ (𝐹‘[𝑣] ∼ ) ∈ [𝑣] ∼ )) |
91 | 87, 90 | imbi12d 336 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = [𝑣] ∼ → ((𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧) ↔ ([𝑣] ∼ ≠ ∅ →
(𝐹‘[𝑣] ∼ ) ∈ [𝑣] ∼
))) |
92 | 38 | adantr 474 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → ∀𝑧 ∈ 𝑆 (𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧)) |
93 | | ovex 6942 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (0[,]1)
∈ V |
94 | | erex 8038 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ( ∼ Er
(0[,]1) → ((0[,]1) ∈ V → ∼ ∈
V)) |
95 | 34, 93, 94 | mp2 9 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ∼ ∈
V |
96 | 95 | ecelqsi 8073 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑣 ∈ (0[,]1) → [𝑣] ∼ ∈ ((0[,]1)
/ ∼ )) |
97 | 96, 36 | syl6eleqr 2917 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 ∈ (0[,]1) → [𝑣] ∼ ∈ 𝑆) |
98 | 97 | adantl 475 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → [𝑣] ∼ ∈ 𝑆) |
99 | 91, 92, 98 | rspcdva 3532 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → ([𝑣] ∼ ≠ ∅ →
(𝐹‘[𝑣] ∼ ) ∈ [𝑣] ∼ )) |
100 | 86, 99 | mpd 15 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝐹‘[𝑣] ∼ ) ∈ [𝑣] ∼ ) |
101 | | fvex 6450 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐹‘[𝑣] ∼ ) ∈
V |
102 | | vex 3417 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑣 ∈ V |
103 | 101, 102 | elec 8056 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘[𝑣] ∼ ) ∈ [𝑣] ∼ ↔ 𝑣 ∼ (𝐹‘[𝑣] ∼ )) |
104 | 100, 103 | sylib 210 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → 𝑣 ∼ (𝐹‘[𝑣] ∼ )) |
105 | 79, 104 | erthi 8063 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → [𝑣] ∼ = [(𝐹‘[𝑣] ∼ )] ∼
) |
106 | 105 | eqcomd 2831 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → [(𝐹‘[𝑣] ∼ )] ∼ =
[𝑣] ∼ ) |
107 | 106 | fveq2d 6441 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝐹‘[(𝐹‘[𝑣] ∼ )] ∼ ) =
(𝐹‘[𝑣] ∼ )) |
108 | 36, 78, 107 | ectocld 8084 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑆) → (𝐹‘[(𝐹‘𝑤)] ∼ ) = (𝐹‘𝑤)) |
109 | 108 | ralrimiva 3175 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑤 ∈ 𝑆 (𝐹‘[(𝐹‘𝑤)] ∼ ) = (𝐹‘𝑤)) |
110 | | eceq1 8052 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝐹‘𝑤) → [𝑧] ∼ = [(𝐹‘𝑤)] ∼ ) |
111 | 110 | fveq2d 6441 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝐹‘𝑤) → (𝐹‘[𝑧] ∼ ) = (𝐹‘[(𝐹‘𝑤)] ∼ )) |
112 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝐹‘𝑤) → 𝑧 = (𝐹‘𝑤)) |
113 | 111, 112 | eqeq12d 2840 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝐹‘𝑤) → ((𝐹‘[𝑧] ∼ ) = 𝑧 ↔ (𝐹‘[(𝐹‘𝑤)] ∼ ) = (𝐹‘𝑤))) |
114 | 113 | ralrn 6616 |
. . . . . . . . . . . . 13
⊢ (𝐹 Fn 𝑆 → (∀𝑧 ∈ ran 𝐹(𝐹‘[𝑧] ∼ ) = 𝑧 ↔ ∀𝑤 ∈ 𝑆 (𝐹‘[(𝐹‘𝑤)] ∼ ) = (𝐹‘𝑤))) |
115 | 37, 114 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (∀𝑧 ∈ ran 𝐹(𝐹‘[𝑧] ∼ ) = 𝑧 ↔ ∀𝑤 ∈ 𝑆 (𝐹‘[(𝐹‘𝑤)] ∼ ) = (𝐹‘𝑤))) |
116 | 109, 115 | mpbird 249 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑧 ∈ ran 𝐹(𝐹‘[𝑧] ∼ ) = 𝑧) |
117 | 116 | adantr 474 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → ∀𝑧 ∈ ran 𝐹(𝐹‘[𝑧] ∼ ) = 𝑧) |
118 | 74, 117, 43 | rspcdva 3532 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝐹‘[(𝑤 − (𝐺‘𝑚))] ∼ ) = (𝑤 − (𝐺‘𝑚))) |
119 | | eceq1 8052 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝑤 − (𝐺‘𝑘)) → [𝑧] ∼ = [(𝑤 − (𝐺‘𝑘))] ∼ ) |
120 | 119 | fveq2d 6441 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑤 − (𝐺‘𝑘)) → (𝐹‘[𝑧] ∼ ) = (𝐹‘[(𝑤 − (𝐺‘𝑘))] ∼ )) |
121 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑤 − (𝐺‘𝑘)) → 𝑧 = (𝑤 − (𝐺‘𝑘))) |
122 | 120, 121 | eqeq12d 2840 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑤 − (𝐺‘𝑘)) → ((𝐹‘[𝑧] ∼ ) = 𝑧 ↔ (𝐹‘[(𝑤 − (𝐺‘𝑘))] ∼ ) = (𝑤 − (𝐺‘𝑘)))) |
123 | 122, 117,
58 | rspcdva 3532 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝐹‘[(𝑤 − (𝐺‘𝑘))] ∼ ) = (𝑤 − (𝐺‘𝑘))) |
124 | 70, 118, 123 | 3eqtr3d 2869 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝑤 − (𝐺‘𝑚)) = (𝑤 − (𝐺‘𝑘))) |
125 | 18, 28, 32, 124 | subcand 10761 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝐺‘𝑚) = (𝐺‘𝑘)) |
126 | 19 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → 𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))) |
127 | | f1of1 6381 |
. . . . . . . . 9
⊢ (𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) → 𝐺:ℕ–1-1→(ℚ ∩ (-1[,]1))) |
128 | 126, 127 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → 𝐺:ℕ–1-1→(ℚ ∩ (-1[,]1))) |
129 | | f1fveq 6779 |
. . . . . . . 8
⊢ ((𝐺:ℕ–1-1→(ℚ ∩ (-1[,]1)) ∧ (𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((𝐺‘𝑚) = (𝐺‘𝑘) ↔ 𝑚 = 𝑘)) |
130 | 128, 2, 29, 129 | syl12anc 870 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → ((𝐺‘𝑚) = (𝐺‘𝑘) ↔ 𝑚 = 𝑘)) |
131 | 125, 130 | mpbid 224 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → 𝑚 = 𝑘) |
132 | 131 | ex 403 |
. . . . 5
⊢ (𝜑 → (((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘))) → 𝑚 = 𝑘)) |
133 | 132 | alrimivv 2027 |
. . . 4
⊢ (𝜑 → ∀𝑚∀𝑘(((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘))) → 𝑚 = 𝑘)) |
134 | | eleq1w 2889 |
. . . . . 6
⊢ (𝑚 = 𝑘 → (𝑚 ∈ ℕ ↔ 𝑘 ∈ ℕ)) |
135 | | fveq2 6437 |
. . . . . . 7
⊢ (𝑚 = 𝑘 → (𝑇‘𝑚) = (𝑇‘𝑘)) |
136 | 135 | eleq2d 2892 |
. . . . . 6
⊢ (𝑚 = 𝑘 → (𝑤 ∈ (𝑇‘𝑚) ↔ 𝑤 ∈ (𝑇‘𝑘))) |
137 | 134, 136 | anbi12d 624 |
. . . . 5
⊢ (𝑚 = 𝑘 → ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ↔ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) |
138 | 137 | mo4 2638 |
. . . 4
⊢
(∃*𝑚(𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ↔ ∀𝑚∀𝑘(((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘))) → 𝑚 = 𝑘)) |
139 | 133, 138 | sylibr 226 |
. . 3
⊢ (𝜑 → ∃*𝑚(𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚))) |
140 | 139 | alrimiv 2026 |
. 2
⊢ (𝜑 → ∀𝑤∃*𝑚(𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚))) |
141 | | dfdisj2 4845 |
. 2
⊢
(Disj 𝑚
∈ ℕ (𝑇‘𝑚) ↔ ∀𝑤∃*𝑚(𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚))) |
142 | 140, 141 | sylibr 226 |
1
⊢ (𝜑 → Disj 𝑚 ∈ ℕ (𝑇‘𝑚)) |