| Step | Hyp | Ref
| Expression |
| 1 | | simprlr 780 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → 𝑤 ∈ (𝑇‘𝑚)) |
| 2 | | simprll 779 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → 𝑚 ∈ ℕ) |
| 3 | | fveq2 6906 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑚 → (𝐺‘𝑛) = (𝐺‘𝑚)) |
| 4 | 3 | oveq2d 7447 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑚 → (𝑠 − (𝐺‘𝑛)) = (𝑠 − (𝐺‘𝑚))) |
| 5 | 4 | eleq1d 2826 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑚 → ((𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹 ↔ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹)) |
| 6 | 5 | rabbidv 3444 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑚 → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹}) |
| 7 | | vitali.6 |
. . . . . . . . . . . . . 14
⊢ 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹}) |
| 8 | | reex 11246 |
. . . . . . . . . . . . . . 15
⊢ ℝ
∈ V |
| 9 | 8 | rabex 5339 |
. . . . . . . . . . . . . 14
⊢ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹} ∈ V |
| 10 | 6, 7, 9 | fvmpt 7016 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ → (𝑇‘𝑚) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹}) |
| 11 | 2, 10 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝑇‘𝑚) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹}) |
| 12 | 1, 11 | eleqtrd 2843 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → 𝑤 ∈ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹}) |
| 13 | | oveq1 7438 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑤 → (𝑠 − (𝐺‘𝑚)) = (𝑤 − (𝐺‘𝑚))) |
| 14 | 13 | eleq1d 2826 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑤 → ((𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹 ↔ (𝑤 − (𝐺‘𝑚)) ∈ ran 𝐹)) |
| 15 | 14 | elrab 3692 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹} ↔ (𝑤 ∈ ℝ ∧ (𝑤 − (𝐺‘𝑚)) ∈ ran 𝐹)) |
| 16 | 12, 15 | sylib 218 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝑤 ∈ ℝ ∧ (𝑤 − (𝐺‘𝑚)) ∈ ran 𝐹)) |
| 17 | 16 | simpld 494 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → 𝑤 ∈ ℝ) |
| 18 | 17 | recnd 11289 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → 𝑤 ∈ ℂ) |
| 19 | | vitali.5 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))) |
| 20 | | f1of 6848 |
. . . . . . . . . . . . 13
⊢ (𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) → 𝐺:ℕ⟶(ℚ ∩
(-1[,]1))) |
| 21 | 19, 20 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺:ℕ⟶(ℚ ∩
(-1[,]1))) |
| 22 | | inss1 4237 |
. . . . . . . . . . . 12
⊢ (ℚ
∩ (-1[,]1)) ⊆ ℚ |
| 23 | | fss 6752 |
. . . . . . . . . . . 12
⊢ ((𝐺:ℕ⟶(ℚ ∩
(-1[,]1)) ∧ (ℚ ∩ (-1[,]1)) ⊆ ℚ) → 𝐺:ℕ⟶ℚ) |
| 24 | 21, 22, 23 | sylancl 586 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺:ℕ⟶ℚ) |
| 25 | 24 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → 𝐺:ℕ⟶ℚ) |
| 26 | 25, 2 | ffvelcdmd 7105 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝐺‘𝑚) ∈ ℚ) |
| 27 | | qcn 13005 |
. . . . . . . . 9
⊢ ((𝐺‘𝑚) ∈ ℚ → (𝐺‘𝑚) ∈ ℂ) |
| 28 | 26, 27 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝐺‘𝑚) ∈ ℂ) |
| 29 | | simprrl 781 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → 𝑘 ∈ ℕ) |
| 30 | 25, 29 | ffvelcdmd 7105 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝐺‘𝑘) ∈ ℚ) |
| 31 | | qcn 13005 |
. . . . . . . . 9
⊢ ((𝐺‘𝑘) ∈ ℚ → (𝐺‘𝑘) ∈ ℂ) |
| 32 | 30, 31 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝐺‘𝑘) ∈ ℂ) |
| 33 | | vitali.1 |
. . . . . . . . . . . . 13
⊢ ∼ =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥 − 𝑦) ∈ ℚ)} |
| 34 | 33 | vitalilem1 25643 |
. . . . . . . . . . . 12
⊢ ∼ Er
(0[,]1) |
| 35 | 34 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → ∼ Er
(0[,]1)) |
| 36 | | vitali.2 |
. . . . . . . . . . . . . . . 16
⊢ 𝑆 = ((0[,]1) / ∼
) |
| 37 | | vitali.3 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐹 Fn 𝑆) |
| 38 | | vitali.4 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑧 ∈ 𝑆 (𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧)) |
| 39 | | vitali.7 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ¬ ran 𝐹 ∈ (𝒫 ℝ
∖ dom vol)) |
| 40 | 33, 36, 37, 38, 19, 7, 39 | vitalilem2 25644 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (ran 𝐹 ⊆ (0[,]1) ∧ (0[,]1) ⊆
∪ 𝑚 ∈ ℕ (𝑇‘𝑚) ∧ ∪
𝑚 ∈ ℕ (𝑇‘𝑚) ⊆ (-1[,]2))) |
| 41 | 40 | simp1d 1143 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ran 𝐹 ⊆ (0[,]1)) |
| 42 | 41 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → ran 𝐹 ⊆ (0[,]1)) |
| 43 | 16 | simprd 495 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝑤 − (𝐺‘𝑚)) ∈ ran 𝐹) |
| 44 | 42, 43 | sseldd 3984 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝑤 − (𝐺‘𝑚)) ∈ (0[,]1)) |
| 45 | | simprrr 782 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → 𝑤 ∈ (𝑇‘𝑘)) |
| 46 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑘 → (𝐺‘𝑛) = (𝐺‘𝑘)) |
| 47 | 46 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 𝑘 → (𝑠 − (𝐺‘𝑛)) = (𝑠 − (𝐺‘𝑘))) |
| 48 | 47 | eleq1d 2826 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑘 → ((𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹 ↔ (𝑠 − (𝐺‘𝑘)) ∈ ran 𝐹)) |
| 49 | 48 | rabbidv 3444 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑘 → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑘)) ∈ ran 𝐹}) |
| 50 | 8 | rabex 5339 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑘)) ∈ ran 𝐹} ∈ V |
| 51 | 49, 7, 50 | fvmpt 7016 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℕ → (𝑇‘𝑘) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑘)) ∈ ran 𝐹}) |
| 52 | 29, 51 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝑇‘𝑘) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑘)) ∈ ran 𝐹}) |
| 53 | 45, 52 | eleqtrd 2843 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → 𝑤 ∈ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑘)) ∈ ran 𝐹}) |
| 54 | | oveq1 7438 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 = 𝑤 → (𝑠 − (𝐺‘𝑘)) = (𝑤 − (𝐺‘𝑘))) |
| 55 | 54 | eleq1d 2826 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = 𝑤 → ((𝑠 − (𝐺‘𝑘)) ∈ ran 𝐹 ↔ (𝑤 − (𝐺‘𝑘)) ∈ ran 𝐹)) |
| 56 | 55 | elrab 3692 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑘)) ∈ ran 𝐹} ↔ (𝑤 ∈ ℝ ∧ (𝑤 − (𝐺‘𝑘)) ∈ ran 𝐹)) |
| 57 | 53, 56 | sylib 218 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝑤 ∈ ℝ ∧ (𝑤 − (𝐺‘𝑘)) ∈ ran 𝐹)) |
| 58 | 57 | simprd 495 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝑤 − (𝐺‘𝑘)) ∈ ran 𝐹) |
| 59 | 42, 58 | sseldd 3984 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝑤 − (𝐺‘𝑘)) ∈ (0[,]1)) |
| 60 | 18, 28, 32 | nnncan1d 11654 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → ((𝑤 − (𝐺‘𝑚)) − (𝑤 − (𝐺‘𝑘))) = ((𝐺‘𝑘) − (𝐺‘𝑚))) |
| 61 | | qsubcl 13010 |
. . . . . . . . . . . . . 14
⊢ (((𝐺‘𝑘) ∈ ℚ ∧ (𝐺‘𝑚) ∈ ℚ) → ((𝐺‘𝑘) − (𝐺‘𝑚)) ∈ ℚ) |
| 62 | 30, 26, 61 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → ((𝐺‘𝑘) − (𝐺‘𝑚)) ∈ ℚ) |
| 63 | 60, 62 | eqeltrd 2841 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → ((𝑤 − (𝐺‘𝑚)) − (𝑤 − (𝐺‘𝑘))) ∈ ℚ) |
| 64 | | oveq12 7440 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = (𝑤 − (𝐺‘𝑚)) ∧ 𝑦 = (𝑤 − (𝐺‘𝑘))) → (𝑥 − 𝑦) = ((𝑤 − (𝐺‘𝑚)) − (𝑤 − (𝐺‘𝑘)))) |
| 65 | 64 | eleq1d 2826 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = (𝑤 − (𝐺‘𝑚)) ∧ 𝑦 = (𝑤 − (𝐺‘𝑘))) → ((𝑥 − 𝑦) ∈ ℚ ↔ ((𝑤 − (𝐺‘𝑚)) − (𝑤 − (𝐺‘𝑘))) ∈ ℚ)) |
| 66 | 65, 33 | brab2a 5779 |
. . . . . . . . . . . 12
⊢ ((𝑤 − (𝐺‘𝑚)) ∼ (𝑤 − (𝐺‘𝑘)) ↔ (((𝑤 − (𝐺‘𝑚)) ∈ (0[,]1) ∧ (𝑤 − (𝐺‘𝑘)) ∈ (0[,]1)) ∧ ((𝑤 − (𝐺‘𝑚)) − (𝑤 − (𝐺‘𝑘))) ∈ ℚ)) |
| 67 | 44, 59, 63, 66 | syl21anbrc 1345 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝑤 − (𝐺‘𝑚)) ∼ (𝑤 − (𝐺‘𝑘))) |
| 68 | 35, 67 | erthi 8798 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → [(𝑤 − (𝐺‘𝑚))] ∼ = [(𝑤 − (𝐺‘𝑘))] ∼ ) |
| 69 | 68 | fveq2d 6910 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝐹‘[(𝑤 − (𝐺‘𝑚))] ∼ ) = (𝐹‘[(𝑤 − (𝐺‘𝑘))] ∼ )) |
| 70 | | eceq1 8784 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝑤 − (𝐺‘𝑚)) → [𝑧] ∼ = [(𝑤 − (𝐺‘𝑚))] ∼ ) |
| 71 | 70 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑤 − (𝐺‘𝑚)) → (𝐹‘[𝑧] ∼ ) = (𝐹‘[(𝑤 − (𝐺‘𝑚))] ∼ )) |
| 72 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑤 − (𝐺‘𝑚)) → 𝑧 = (𝑤 − (𝐺‘𝑚))) |
| 73 | 71, 72 | eqeq12d 2753 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑤 − (𝐺‘𝑚)) → ((𝐹‘[𝑧] ∼ ) = 𝑧 ↔ (𝐹‘[(𝑤 − (𝐺‘𝑚))] ∼ ) = (𝑤 − (𝐺‘𝑚)))) |
| 74 | | fveq2 6906 |
. . . . . . . . . . . . . . . . 17
⊢ ([𝑣] ∼ = 𝑤 → (𝐹‘[𝑣] ∼ ) = (𝐹‘𝑤)) |
| 75 | 74 | eceq1d 8785 |
. . . . . . . . . . . . . . . 16
⊢ ([𝑣] ∼ = 𝑤 → [(𝐹‘[𝑣] ∼ )] ∼ =
[(𝐹‘𝑤)] ∼ ) |
| 76 | 75 | fveq2d 6910 |
. . . . . . . . . . . . . . 15
⊢ ([𝑣] ∼ = 𝑤 → (𝐹‘[(𝐹‘[𝑣] ∼ )] ∼ ) =
(𝐹‘[(𝐹‘𝑤)] ∼ )) |
| 77 | 76, 74 | eqeq12d 2753 |
. . . . . . . . . . . . . 14
⊢ ([𝑣] ∼ = 𝑤 → ((𝐹‘[(𝐹‘[𝑣] ∼ )] ∼ ) =
(𝐹‘[𝑣] ∼ ) ↔ (𝐹‘[(𝐹‘𝑤)] ∼ ) = (𝐹‘𝑤))) |
| 78 | 34 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → ∼ Er
(0[,]1)) |
| 79 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → 𝑣 ∈ (0[,]1)) |
| 80 | | erdm 8755 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ( ∼ Er
(0[,]1) → dom ∼ =
(0[,]1)) |
| 81 | 34, 80 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ dom ∼ =
(0[,]1) |
| 82 | 81 | eleq2i 2833 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 ∈ dom ∼ ↔ 𝑣 ∈
(0[,]1)) |
| 83 | | ecdmn0 8794 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 ∈ dom ∼ ↔ [𝑣] ∼ ≠
∅) |
| 84 | 82, 83 | bitr3i 277 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑣 ∈ (0[,]1) ↔ [𝑣] ∼ ≠
∅) |
| 85 | 79, 84 | sylib 218 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → [𝑣] ∼ ≠
∅) |
| 86 | | neeq1 3003 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = [𝑣] ∼ → (𝑧 ≠ ∅ ↔ [𝑣] ∼ ≠
∅)) |
| 87 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 = [𝑣] ∼ → (𝐹‘𝑧) = (𝐹‘[𝑣] ∼ )) |
| 88 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 = [𝑣] ∼ → 𝑧 = [𝑣] ∼ ) |
| 89 | 87, 88 | eleq12d 2835 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = [𝑣] ∼ → ((𝐹‘𝑧) ∈ 𝑧 ↔ (𝐹‘[𝑣] ∼ ) ∈ [𝑣] ∼ )) |
| 90 | 86, 89 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = [𝑣] ∼ → ((𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧) ↔ ([𝑣] ∼ ≠ ∅ →
(𝐹‘[𝑣] ∼ ) ∈ [𝑣] ∼
))) |
| 91 | 38 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → ∀𝑧 ∈ 𝑆 (𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧)) |
| 92 | | ovex 7464 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (0[,]1)
∈ V |
| 93 | | erex 8769 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ( ∼ Er
(0[,]1) → ((0[,]1) ∈ V → ∼ ∈
V)) |
| 94 | 34, 92, 93 | mp2 9 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ∼ ∈
V |
| 95 | 94 | ecelqsi 8813 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑣 ∈ (0[,]1) → [𝑣] ∼ ∈ ((0[,]1)
/ ∼ )) |
| 96 | 95, 36 | eleqtrrdi 2852 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 ∈ (0[,]1) → [𝑣] ∼ ∈ 𝑆) |
| 97 | 96 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → [𝑣] ∼ ∈ 𝑆) |
| 98 | 90, 91, 97 | rspcdva 3623 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → ([𝑣] ∼ ≠ ∅ →
(𝐹‘[𝑣] ∼ ) ∈ [𝑣] ∼ )) |
| 99 | 85, 98 | mpd 15 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝐹‘[𝑣] ∼ ) ∈ [𝑣] ∼ ) |
| 100 | | fvex 6919 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐹‘[𝑣] ∼ ) ∈
V |
| 101 | | vex 3484 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑣 ∈ V |
| 102 | 100, 101 | elec 8791 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘[𝑣] ∼ ) ∈ [𝑣] ∼ ↔ 𝑣 ∼ (𝐹‘[𝑣] ∼ )) |
| 103 | 99, 102 | sylib 218 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → 𝑣 ∼ (𝐹‘[𝑣] ∼ )) |
| 104 | 78, 103 | erthi 8798 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → [𝑣] ∼ = [(𝐹‘[𝑣] ∼ )] ∼
) |
| 105 | 104 | eqcomd 2743 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → [(𝐹‘[𝑣] ∼ )] ∼ =
[𝑣] ∼ ) |
| 106 | 105 | fveq2d 6910 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝐹‘[(𝐹‘[𝑣] ∼ )] ∼ ) =
(𝐹‘[𝑣] ∼ )) |
| 107 | 36, 77, 106 | ectocld 8824 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑆) → (𝐹‘[(𝐹‘𝑤)] ∼ ) = (𝐹‘𝑤)) |
| 108 | 107 | ralrimiva 3146 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑤 ∈ 𝑆 (𝐹‘[(𝐹‘𝑤)] ∼ ) = (𝐹‘𝑤)) |
| 109 | | eceq1 8784 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝐹‘𝑤) → [𝑧] ∼ = [(𝐹‘𝑤)] ∼ ) |
| 110 | 109 | fveq2d 6910 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝐹‘𝑤) → (𝐹‘[𝑧] ∼ ) = (𝐹‘[(𝐹‘𝑤)] ∼ )) |
| 111 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝐹‘𝑤) → 𝑧 = (𝐹‘𝑤)) |
| 112 | 110, 111 | eqeq12d 2753 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝐹‘𝑤) → ((𝐹‘[𝑧] ∼ ) = 𝑧 ↔ (𝐹‘[(𝐹‘𝑤)] ∼ ) = (𝐹‘𝑤))) |
| 113 | 112 | ralrn 7108 |
. . . . . . . . . . . . 13
⊢ (𝐹 Fn 𝑆 → (∀𝑧 ∈ ran 𝐹(𝐹‘[𝑧] ∼ ) = 𝑧 ↔ ∀𝑤 ∈ 𝑆 (𝐹‘[(𝐹‘𝑤)] ∼ ) = (𝐹‘𝑤))) |
| 114 | 37, 113 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (∀𝑧 ∈ ran 𝐹(𝐹‘[𝑧] ∼ ) = 𝑧 ↔ ∀𝑤 ∈ 𝑆 (𝐹‘[(𝐹‘𝑤)] ∼ ) = (𝐹‘𝑤))) |
| 115 | 108, 114 | mpbird 257 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑧 ∈ ran 𝐹(𝐹‘[𝑧] ∼ ) = 𝑧) |
| 116 | 115 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → ∀𝑧 ∈ ran 𝐹(𝐹‘[𝑧] ∼ ) = 𝑧) |
| 117 | 73, 116, 43 | rspcdva 3623 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝐹‘[(𝑤 − (𝐺‘𝑚))] ∼ ) = (𝑤 − (𝐺‘𝑚))) |
| 118 | | eceq1 8784 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝑤 − (𝐺‘𝑘)) → [𝑧] ∼ = [(𝑤 − (𝐺‘𝑘))] ∼ ) |
| 119 | 118 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑤 − (𝐺‘𝑘)) → (𝐹‘[𝑧] ∼ ) = (𝐹‘[(𝑤 − (𝐺‘𝑘))] ∼ )) |
| 120 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑤 − (𝐺‘𝑘)) → 𝑧 = (𝑤 − (𝐺‘𝑘))) |
| 121 | 119, 120 | eqeq12d 2753 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑤 − (𝐺‘𝑘)) → ((𝐹‘[𝑧] ∼ ) = 𝑧 ↔ (𝐹‘[(𝑤 − (𝐺‘𝑘))] ∼ ) = (𝑤 − (𝐺‘𝑘)))) |
| 122 | 121, 116,
58 | rspcdva 3623 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝐹‘[(𝑤 − (𝐺‘𝑘))] ∼ ) = (𝑤 − (𝐺‘𝑘))) |
| 123 | 69, 117, 122 | 3eqtr3d 2785 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝑤 − (𝐺‘𝑚)) = (𝑤 − (𝐺‘𝑘))) |
| 124 | 18, 28, 32, 123 | subcand 11661 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → (𝐺‘𝑚) = (𝐺‘𝑘)) |
| 125 | 19 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → 𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))) |
| 126 | | f1of1 6847 |
. . . . . . . . 9
⊢ (𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) → 𝐺:ℕ–1-1→(ℚ ∩ (-1[,]1))) |
| 127 | 125, 126 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → 𝐺:ℕ–1-1→(ℚ ∩ (-1[,]1))) |
| 128 | | f1fveq 7282 |
. . . . . . . 8
⊢ ((𝐺:ℕ–1-1→(ℚ ∩ (-1[,]1)) ∧ (𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((𝐺‘𝑚) = (𝐺‘𝑘) ↔ 𝑚 = 𝑘)) |
| 129 | 127, 2, 29, 128 | syl12anc 837 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → ((𝐺‘𝑚) = (𝐺‘𝑘) ↔ 𝑚 = 𝑘)) |
| 130 | 124, 129 | mpbid 232 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) → 𝑚 = 𝑘) |
| 131 | 130 | ex 412 |
. . . . 5
⊢ (𝜑 → (((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘))) → 𝑚 = 𝑘)) |
| 132 | 131 | alrimivv 1928 |
. . . 4
⊢ (𝜑 → ∀𝑚∀𝑘(((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘))) → 𝑚 = 𝑘)) |
| 133 | | eleq1w 2824 |
. . . . . 6
⊢ (𝑚 = 𝑘 → (𝑚 ∈ ℕ ↔ 𝑘 ∈ ℕ)) |
| 134 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑚 = 𝑘 → (𝑇‘𝑚) = (𝑇‘𝑘)) |
| 135 | 134 | eleq2d 2827 |
. . . . . 6
⊢ (𝑚 = 𝑘 → (𝑤 ∈ (𝑇‘𝑚) ↔ 𝑤 ∈ (𝑇‘𝑘))) |
| 136 | 133, 135 | anbi12d 632 |
. . . . 5
⊢ (𝑚 = 𝑘 → ((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ↔ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘)))) |
| 137 | 136 | mo4 2566 |
. . . 4
⊢
(∃*𝑚(𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ↔ ∀𝑚∀𝑘(((𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚)) ∧ (𝑘 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑘))) → 𝑚 = 𝑘)) |
| 138 | 132, 137 | sylibr 234 |
. . 3
⊢ (𝜑 → ∃*𝑚(𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚))) |
| 139 | 138 | alrimiv 1927 |
. 2
⊢ (𝜑 → ∀𝑤∃*𝑚(𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚))) |
| 140 | | dfdisj2 5112 |
. 2
⊢
(Disj 𝑚
∈ ℕ (𝑇‘𝑚) ↔ ∀𝑤∃*𝑚(𝑚 ∈ ℕ ∧ 𝑤 ∈ (𝑇‘𝑚))) |
| 141 | 139, 140 | sylibr 234 |
1
⊢ (𝜑 → Disj 𝑚 ∈ ℕ (𝑇‘𝑚)) |