Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > disjxsn | Structured version Visualization version GIF version |
Description: A singleton collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
disjxsn | ⊢ Disj 𝑥 ∈ {𝐴}𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisj2 4997 | . 2 ⊢ (Disj 𝑥 ∈ {𝐴}𝐵 ↔ ∀𝑦∃*𝑥(𝑥 ∈ {𝐴} ∧ 𝑦 ∈ 𝐵)) | |
2 | moeq 3606 | . . 3 ⊢ ∃*𝑥 𝑥 = 𝐴 | |
3 | elsni 4533 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
4 | 3 | adantr 484 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ 𝐵) → 𝑥 = 𝐴) |
5 | 4 | moimi 2545 | . . 3 ⊢ (∃*𝑥 𝑥 = 𝐴 → ∃*𝑥(𝑥 ∈ {𝐴} ∧ 𝑦 ∈ 𝐵)) |
6 | 2, 5 | ax-mp 5 | . 2 ⊢ ∃*𝑥(𝑥 ∈ {𝐴} ∧ 𝑦 ∈ 𝐵) |
7 | 1, 6 | mpgbir 1806 | 1 ⊢ Disj 𝑥 ∈ {𝐴}𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∃*wmo 2538 {csn 4516 Disj wdisj 4995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-sb 2075 df-mo 2540 df-clab 2717 df-cleq 2730 df-clel 2811 df-rmo 3061 df-sn 4517 df-disj 4996 |
This theorem is referenced by: disjx0 5024 disjdifprg 30488 rossros 31718 meadjun 43542 |
Copyright terms: Public domain | W3C validator |