Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjxsn Structured version   Visualization version   GIF version

Theorem disjxsn 4956
 Description: A singleton collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjxsn Disj 𝑥 ∈ {𝐴}𝐵
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem disjxsn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfdisj2 4932 . 2 (Disj 𝑥 ∈ {𝐴}𝐵 ↔ ∀𝑦∃*𝑥(𝑥 ∈ {𝐴} ∧ 𝑦𝐵))
2 moeq 3634 . . 3 ∃*𝑥 𝑥 = 𝐴
3 elsni 4489 . . . . 5 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
43adantr 481 . . . 4 ((𝑥 ∈ {𝐴} ∧ 𝑦𝐵) → 𝑥 = 𝐴)
54moimi 2581 . . 3 (∃*𝑥 𝑥 = 𝐴 → ∃*𝑥(𝑥 ∈ {𝐴} ∧ 𝑦𝐵))
62, 5ax-mp 5 . 2 ∃*𝑥(𝑥 ∈ {𝐴} ∧ 𝑦𝐵)
71, 6mpgbir 1781 1 Disj 𝑥 ∈ {𝐴}𝐵
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 396   = wceq 1522   ∈ wcel 2081  ∃*wmo 2574  {csn 4472  Disj wdisj 4930 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-ext 2769 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-rmo 3113  df-sn 4473  df-disj 4931 This theorem is referenced by:  disjx0  4957  disjdifprg  30015  rossros  31056  meadjun  42286
 Copyright terms: Public domain W3C validator