| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjxsn | Structured version Visualization version GIF version | ||
| Description: A singleton collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| disjxsn | ⊢ Disj 𝑥 ∈ {𝐴}𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdisj2 5058 | . 2 ⊢ (Disj 𝑥 ∈ {𝐴}𝐵 ↔ ∀𝑦∃*𝑥(𝑥 ∈ {𝐴} ∧ 𝑦 ∈ 𝐵)) | |
| 2 | moeq 3664 | . . 3 ⊢ ∃*𝑥 𝑥 = 𝐴 | |
| 3 | elsni 4591 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ 𝐵) → 𝑥 = 𝐴) |
| 5 | 4 | moimi 2539 | . . 3 ⊢ (∃*𝑥 𝑥 = 𝐴 → ∃*𝑥(𝑥 ∈ {𝐴} ∧ 𝑦 ∈ 𝐵)) |
| 6 | 2, 5 | ax-mp 5 | . 2 ⊢ ∃*𝑥(𝑥 ∈ {𝐴} ∧ 𝑦 ∈ 𝐵) |
| 7 | 1, 6 | mpgbir 1800 | 1 ⊢ Disj 𝑥 ∈ {𝐴}𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∃*wmo 2532 {csn 4574 Disj wdisj 5056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2067 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-rmo 3344 df-sn 4575 df-disj 5057 |
| This theorem is referenced by: disjx0 5084 disjdifprg 32545 rossros 34183 meadjun 46479 |
| Copyright terms: Public domain | W3C validator |