| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjxsn | Structured version Visualization version GIF version | ||
| Description: A singleton collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| disjxsn | ⊢ Disj 𝑥 ∈ {𝐴}𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdisj2 5076 | . 2 ⊢ (Disj 𝑥 ∈ {𝐴}𝐵 ↔ ∀𝑦∃*𝑥(𝑥 ∈ {𝐴} ∧ 𝑦 ∈ 𝐵)) | |
| 2 | moeq 3678 | . . 3 ⊢ ∃*𝑥 𝑥 = 𝐴 | |
| 3 | elsni 4606 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ 𝐵) → 𝑥 = 𝐴) |
| 5 | 4 | moimi 2538 | . . 3 ⊢ (∃*𝑥 𝑥 = 𝐴 → ∃*𝑥(𝑥 ∈ {𝐴} ∧ 𝑦 ∈ 𝐵)) |
| 6 | 2, 5 | ax-mp 5 | . 2 ⊢ ∃*𝑥(𝑥 ∈ {𝐴} ∧ 𝑦 ∈ 𝐵) |
| 7 | 1, 6 | mpgbir 1799 | 1 ⊢ Disj 𝑥 ∈ {𝐴}𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃*wmo 2531 {csn 4589 Disj wdisj 5074 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-rmo 3354 df-sn 4590 df-disj 5075 |
| This theorem is referenced by: disjx0 5102 disjdifprg 32504 rossros 34170 meadjun 46460 |
| Copyright terms: Public domain | W3C validator |