HomeHome Metamath Proof Explorer
Theorem List (p. 52 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 5101-5200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembreqtrd 5101 Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999.)
(𝜑𝐴𝑅𝐵)    &   (𝜑𝐵 = 𝐶)       (𝜑𝐴𝑅𝐶)
 
Theorembreqtrri 5102 Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.)
𝐴𝑅𝐵    &   𝐶 = 𝐵       𝐴𝑅𝐶
 
Theorembreqtrrd 5103 Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999.)
(𝜑𝐴𝑅𝐵)    &   (𝜑𝐶 = 𝐵)       (𝜑𝐴𝑅𝐶)
 
Theorem3brtr3i 5104 Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.)
𝐴𝑅𝐵    &   𝐴 = 𝐶    &   𝐵 = 𝐷       𝐶𝑅𝐷
 
Theorem3brtr4i 5105 Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.)
𝐴𝑅𝐵    &   𝐶 = 𝐴    &   𝐷 = 𝐵       𝐶𝑅𝐷
 
Theorem3brtr3d 5106 Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.)
(𝜑𝐴𝑅𝐵)    &   (𝜑𝐴 = 𝐶)    &   (𝜑𝐵 = 𝐷)       (𝜑𝐶𝑅𝐷)
 
Theorem3brtr4d 5107 Substitution of equality into both sides of a binary relation. (Contributed by NM, 21-Feb-2005.)
(𝜑𝐴𝑅𝐵)    &   (𝜑𝐶 = 𝐴)    &   (𝜑𝐷 = 𝐵)       (𝜑𝐶𝑅𝐷)
 
Theorem3brtr3g 5108 Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.)
(𝜑𝐴𝑅𝐵)    &   𝐴 = 𝐶    &   𝐵 = 𝐷       (𝜑𝐶𝑅𝐷)
 
Theorem3brtr4g 5109 Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.)
(𝜑𝐴𝑅𝐵)    &   𝐶 = 𝐴    &   𝐷 = 𝐵       (𝜑𝐶𝑅𝐷)
 
Theoremeqbrtrid 5110 A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.)
𝐴 = 𝐵    &   (𝜑𝐵𝑅𝐶)       (𝜑𝐴𝑅𝐶)
 
Theoremeqbrtrrid 5111 A chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004.)
𝐵 = 𝐴    &   (𝜑𝐵𝑅𝐶)       (𝜑𝐴𝑅𝐶)
 
Theorembreqtrid 5112 A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.)
𝐴𝑅𝐵    &   (𝜑𝐵 = 𝐶)       (𝜑𝐴𝑅𝐶)
 
Theorembreqtrrid 5113 A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.)
𝐴𝑅𝐵    &   (𝜑𝐶 = 𝐵)       (𝜑𝐴𝑅𝐶)
 
Theoremeqbrtrdi 5114 A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.)
(𝜑𝐴 = 𝐵)    &   𝐵𝑅𝐶       (𝜑𝐴𝑅𝐶)
 
Theoremeqbrtrrdi 5115 A chained equality inference for a binary relation. (Contributed by NM, 4-Jan-2006.)
(𝜑𝐵 = 𝐴)    &   𝐵𝑅𝐶       (𝜑𝐴𝑅𝐶)
 
Theorembreqtrdi 5116 A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.)
(𝜑𝐴𝑅𝐵)    &   𝐵 = 𝐶       (𝜑𝐴𝑅𝐶)
 
Theorembreqtrrdi 5117 A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.)
(𝜑𝐴𝑅𝐵)    &   𝐶 = 𝐵       (𝜑𝐴𝑅𝐶)
 
Theoremssbrd 5118 Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004.)
(𝜑𝐴𝐵)       (𝜑 → (𝐶𝐴𝐷𝐶𝐵𝐷))
 
Theoremssbr 5119 Implication from a subclass relationship of binary relations. (Contributed by Peter Mazsa, 11-Nov-2019.)
(𝐴𝐵 → (𝐶𝐴𝐷𝐶𝐵𝐷))
 
Theoremssbri 5120 Inference from a subclass relationship of binary relations. (Contributed by NM, 28-Mar-2007.) (Revised by Mario Carneiro, 8-Feb-2015.)
𝐴𝐵       (𝐶𝐴𝐷𝐶𝐵𝐷)
 
Theoremnfbrd 5121 Deduction version of bound-variable hypothesis builder nfbr 5122. (Contributed by NM, 13-Dec-2005.) (Revised by Mario Carneiro, 14-Oct-2016.)
(𝜑𝑥𝐴)    &   (𝜑𝑥𝑅)    &   (𝜑𝑥𝐵)       (𝜑 → Ⅎ𝑥 𝐴𝑅𝐵)
 
Theoremnfbr 5122 Bound-variable hypothesis builder for binary relation. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 14-Oct-2016.)
𝑥𝐴    &   𝑥𝑅    &   𝑥𝐵       𝑥 𝐴𝑅𝐵
 
Theorembrab1 5123* Relationship between a binary relation and a class abstraction. (Contributed by Andrew Salmon, 8-Jul-2011.)
(𝑥𝑅𝐴𝑥 ∈ {𝑧𝑧𝑅𝐴})
 
Theorembr0 5124 The empty binary relation never holds. (Contributed by NM, 23-Aug-2018.)
¬ 𝐴𝐵
 
Theorembrne0 5125 If two sets are in a binary relation, the relation cannot be empty. (Contributed by Alexander van der Vekens, 7-Jul-2018.)
(𝐴𝑅𝐵𝑅 ≠ ∅)
 
Theorembrun 5126 The union of two binary relations. (Contributed by NM, 21-Dec-2008.)
(𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵𝐴𝑆𝐵))
 
Theorembrin 5127 The intersection of two relations. (Contributed by FL, 7-Oct-2008.)
(𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵𝐴𝑆𝐵))
 
Theorembrdif 5128 The difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2011.)
(𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ ¬ 𝐴𝑆𝐵))
 
Theoremsbcbr123 5129 Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) (Revised by NM, 22-Aug-2018.)
([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝑅𝐴 / 𝑥𝐶)
 
Theoremsbcbr 5130* Move substitution in and out of a binary relation. (Contributed by NM, 23-Aug-2018.)
([𝐴 / 𝑥]𝐵𝑅𝐶𝐵𝐴 / 𝑥𝑅𝐶)
 
Theoremsbcbr12g 5131* Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 / 𝑥𝐵𝑅𝐴 / 𝑥𝐶))
 
Theoremsbcbr1g 5132* Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 / 𝑥𝐵𝑅𝐶))
 
Theoremsbcbr2g 5133* Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐵𝑅𝐴 / 𝑥𝐶))
 
Theorembrsymdif 5134 Characterization of the symmetric difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2012.)
(𝐴(𝑅𝑆)𝐵 ↔ ¬ (𝐴𝑅𝐵𝐴𝑆𝐵))
 
Theorembrralrspcev 5135* Restricted existential specialization with a restricted universal quantifier over a relation, closed form. (Contributed by AV, 20-Aug-2022.)
((𝐵𝑋 ∧ ∀𝑦𝑌 𝐴𝑅𝐵) → ∃𝑥𝑋𝑦𝑌 𝐴𝑅𝑥)
 
Theorembrimralrspcev 5136* Restricted existential specialization with a restricted universal quantifier over an implication with a relation in the antecedent, closed form. (Contributed by AV, 20-Aug-2022.)
((𝐵𝑋 ∧ ∀𝑦𝑌 ((𝜑𝐴𝑅𝐵) → 𝜓)) → ∃𝑥𝑋𝑦𝑌 ((𝜑𝐴𝑅𝑥) → 𝜓))
 
2.1.24  Ordered-pair class abstractions (class builders)
 
Syntaxcopab 5137 Extend class notation to include ordered-pair class abstraction (class builder).
class {⟨𝑥, 𝑦⟩ ∣ 𝜑}
 
Definitiondf-opab 5138* Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually 𝑥 and 𝑦 are distinct, although the definition does not require it (see dfid2 5492 for a case where they are not distinct). The brace notation is called "class abstraction" by Quine; it is also called "class builder" in the literature. An alternate definition using no existential quantifiers is shown by dfopab2 7901. An example is given by ex-opab 28805. (Contributed by NM, 4-Jul-1994.)
{⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
 
Theoremopabss 5139* The collection of ordered pairs in a class is a subclass of it. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
{⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} ⊆ 𝑅
 
Theoremopabbid 5140 Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
𝑥𝜑    &   𝑦𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑥, 𝑦⟩ ∣ 𝜒})
 
Theoremopabbidv 5141* Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.)
(𝜑 → (𝜓𝜒))       (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑥, 𝑦⟩ ∣ 𝜒})
 
Theoremopabbii 5142 Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.)
(𝜑𝜓)       {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ 𝜓}
 
Theoremnfopabd 5143* Bound-variable hypothesis builder for class abstraction. Deduction form. (Contributed by Scott Fenton, 26-Oct-2024.)
𝑥𝜑    &   𝑦𝜑    &   (𝜑 → Ⅎ𝑧𝜓)       (𝜑𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜓})
 
Theoremnfopab 5144* Bound-variable hypothesis builder for class abstraction. (Contributed by NM, 1-Sep-1999.) Remove disjoint variable conditions. (Revised by Andrew Salmon, 11-Jul-2011.) (Revised by Scott Fenton, 26-Oct-2024.)
𝑧𝜑       𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}
 
Theoremnfopab1 5145 The first abstraction variable in an ordered-pair class abstraction is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}
 
Theoremnfopab2 5146 The second abstraction variable in an ordered-pair class abstraction is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}
 
Theoremcbvopab 5147* Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 14-Sep-2003.)
𝑧𝜑    &   𝑤𝜑    &   𝑥𝜓    &   𝑦𝜓    &   ((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))       {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑤⟩ ∣ 𝜓}
 
Theoremcbvopabv 5148* Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 15-Oct-1996.) Reduce axiom usage. (Revised by Gino Giotto, 15-Oct-2024.)
((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))       {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑤⟩ ∣ 𝜓}
 
TheoremcbvopabvOLD 5149* Obsolete version of cbvopabv 5148 as of 15-Oct-2024. (Contributed by NM, 15-Oct-1996.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))       {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑤⟩ ∣ 𝜓}
 
Theoremcbvopab1 5150* Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 6-Oct-2004.) (Revised by Mario Carneiro, 14-Oct-2016.) Add disjoint variable condition to avoid ax-13 2373. See cbvopab1g 5151 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 17-Jan-2024.)
𝑧𝜑    &   𝑥𝜓    &   (𝑥 = 𝑧 → (𝜑𝜓))       {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜓}
 
Theoremcbvopab1g 5151* Change first bound variable in an ordered-pair class abstraction, using explicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2373. See cbvopab1 5150 for a version with more disjoint variable conditions, but not requiring ax-13 2373. (Contributed by NM, 6-Oct-2004.) (Revised by Mario Carneiro, 14-Oct-2016.) (New usage is discouraged.)
𝑧𝜑    &   𝑥𝜓    &   (𝑥 = 𝑧 → (𝜑𝜓))       {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜓}
 
Theoremcbvopab2 5152* Change second bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 22-Aug-2013.)
𝑧𝜑    &   𝑦𝜓    &   (𝑦 = 𝑧 → (𝜑𝜓))       {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑧⟩ ∣ 𝜓}
 
Theoremcbvopab1s 5153* Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 31-Jul-2003.)
{⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ [𝑧 / 𝑥]𝜑}
 
Theoremcbvopab1v 5154* Rule used to change the first bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) Reduce axiom usage. (Revised by Gino Giotto, 17-Nov-2024.)
(𝑥 = 𝑧 → (𝜑𝜓))       {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜓}
 
Theoremcbvopab1vOLD 5155* Obsolete version of cbvopab1v 5154 as of 17-Nov-2024. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑥 = 𝑧 → (𝜑𝜓))       {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜓}
 
Theoremcbvopab2v 5156* Rule used to change the second bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 2-Sep-1999.)
(𝑦 = 𝑧 → (𝜑𝜓))       {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑧⟩ ∣ 𝜓}
 
Theoremunopab 5157 Union of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.)
({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}
 
2.1.25  Functions in maps-to notation
 
Syntaxcmpt 5158 Extend the definition of a class to include maps-to notation for defining a function via a rule.
class (𝑥𝐴𝐵)
 
Definitiondf-mpt 5159* Define maps-to notation for defining a function via a rule. Read as "the function which maps 𝑥 (in 𝐴) to 𝐵(𝑥)". The class expression 𝐵 is the value of the function at 𝑥 and normally contains the variable 𝑥. An example is the square function for complex numbers, (𝑥 ∈ ℂ ↦ (𝑥↑2)). Similar to the definition of mapping in [ChoquetDD] p. 2. (Contributed by NM, 17-Feb-2008.)
(𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
 
Theoremmpteq12da 5160 An equality inference for the maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) Remove dependency on ax-10 2138. (Revised by SN, 11-Nov-2024.)
𝑥𝜑    &   (𝜑𝐴 = 𝐶)    &   ((𝜑𝑥𝐴) → 𝐵 = 𝐷)       (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
 
Theoremmpteq12df 5161 An equality inference for the maps-to notation. Compare mpteq12dv 5166. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 11-Dec-2016.) (Proof shortened by SN, 11-Nov-2024.)
𝑥𝜑    &   (𝜑𝐴 = 𝐶)    &   (𝜑𝐵 = 𝐷)       (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
 
Theoremmpteq12dfOLD 5162 Obsolete version of mpteq12df 5161 as of 11-Nov-2024. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 11-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑥𝜑    &   (𝜑𝐴 = 𝐶)    &   (𝜑𝐵 = 𝐷)       (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
 
Theoremmpteq12f 5163 An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥𝐴 𝐵 = 𝐷) → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
 
Theoremmpteq12dva 5164* An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017.) Remove dependency on ax-10 2138, ax-12 2172. (Revised by SN, 11-Nov-2024.)
(𝜑𝐴 = 𝐶)    &   ((𝜑𝑥𝐴) → 𝐵 = 𝐷)       (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
 
Theoremmpteq12dvaOLD 5165* Obsolete version of mpteq12dva 5164 as of 11-Nov-2024. (Contributed by Mario Carneiro, 26-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐴 = 𝐶)    &   ((𝜑𝑥𝐴) → 𝐵 = 𝐷)       (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
 
Theoremmpteq12dv 5166* An equality inference for the maps-to notation. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 16-Dec-2013.) Remove dependency on ax-10 2138, ax-12 2172. (Revised by SN and Gino Giotto, 1-Dec-2023.)
(𝜑𝐴 = 𝐶)    &   (𝜑𝐵 = 𝐷)       (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
 
Theoremmpteq12 5167* An equality theorem for the maps-to notation. (Contributed by NM, 16-Dec-2013.)
((𝐴 = 𝐶 ∧ ∀𝑥𝐴 𝐵 = 𝐷) → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
 
Theoremmpteq1 5168* An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) (Proof shortened by SN, 11-Nov-2024.)
(𝐴 = 𝐵 → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
 
Theoremmpteq1OLD 5169* Obsolete version of mpteq1 5168 as of 11-Nov-2024. (Contributed by Mario Carneiro, 16-Dec-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴 = 𝐵 → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
 
Theoremmpteq1d 5170* An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 11-Jun-2016.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
 
Theoremmpteq1i 5171 An equality theorem for the maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) Remove all disjoint variable conditions. (Revised by SN, 11-Nov-2024.)
𝐴 = 𝐵       (𝑥𝐴𝐶) = (𝑥𝐵𝐶)
 
Theoremmpteq1iOLD 5172* An equality theorem for the maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐴 = 𝐵       (𝑥𝐴𝐶) = (𝑥𝐵𝐶)
 
Theoremmpteq2da 5173 Slightly more general equality inference for the maps-to notation. (Contributed by FL, 14-Sep-2013.) (Revised by Mario Carneiro, 16-Dec-2013.) (Proof shortened by SN, 11-Nov-2024.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝐵 = 𝐶)       (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
 
Theoremmpteq2daOLD 5174 Obsolete version of mpteq2da 5173 as of 11-Nov-2024. (Contributed by FL, 14-Sep-2013.) (Revised by Mario Carneiro, 16-Dec-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝐵 = 𝐶)       (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
 
Theoremmpteq2dva 5175* Slightly more general equality inference for the maps-to notation. (Contributed by Scott Fenton, 25-Apr-2012.) Remove dependency on ax-10 2138. (Revised by SN, 11-Nov-2024.)
((𝜑𝑥𝐴) → 𝐵 = 𝐶)       (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
 
Theoremmpteq2dvaOLD 5176* Obsolete version of mpteq2dva 5175 as of 11-Nov-2024. (Contributed by Scott Fenton, 25-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝑥𝐴) → 𝐵 = 𝐶)       (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
 
Theoremmpteq2dv 5177* An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 23-Aug-2014.)
(𝜑𝐵 = 𝐶)       (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
 
Theoremmpteq2ia 5178 An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) (Proof shortened by SN, 11-Nov-2024.)
(𝑥𝐴𝐵 = 𝐶)       (𝑥𝐴𝐵) = (𝑥𝐴𝐶)
 
Theoremmpteq2iaOLD 5179 Obsolete version of mpteq2ia 5178 as of 11-Nov-2024. (Contributed by Mario Carneiro, 16-Dec-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑥𝐴𝐵 = 𝐶)       (𝑥𝐴𝐵) = (𝑥𝐴𝐶)
 
Theoremmpteq2i 5180 An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
𝐵 = 𝐶       (𝑥𝐴𝐵) = (𝑥𝐴𝐶)
 
Theoremmpteq12i 5181 An equality inference for the maps-to notation. (Contributed by Scott Fenton, 27-Oct-2010.) (Revised by Mario Carneiro, 16-Dec-2013.)
𝐴 = 𝐶    &   𝐵 = 𝐷       (𝑥𝐴𝐵) = (𝑥𝐶𝐷)
 
Theoremnfmpt 5182* Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.)
𝑥𝐴    &   𝑥𝐵       𝑥(𝑦𝐴𝐵)
 
Theoremnfmpt1 5183 Bound-variable hypothesis builder for the maps-to notation. (Contributed by FL, 17-Feb-2008.)
𝑥(𝑥𝐴𝐵)
 
Theoremcbvmptf 5184* Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.) (Revised by Thierry Arnoux, 9-Mar-2017.) Add disjoint variable condition to avoid ax-13 2373. See cbvmptfg 5185 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 17-Jan-2024.)
𝑥𝐴    &   𝑦𝐴    &   𝑦𝐵    &   𝑥𝐶    &   (𝑥 = 𝑦𝐵 = 𝐶)       (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
 
Theoremcbvmptfg 5185 Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2373. See cbvmptf 5184 for a version with more disjoint variable conditions, but not requiring ax-13 2373. (Contributed by NM, 11-Sep-2011.) (Revised by Thierry Arnoux, 9-Mar-2017.) (New usage is discouraged.)
𝑥𝐴    &   𝑦𝐴    &   𝑦𝐵    &   𝑥𝐶    &   (𝑥 = 𝑦𝐵 = 𝐶)       (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
 
Theoremcbvmpt 5186* Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.) Add disjoint variable condition to avoid ax-13 2373. See cbvmptg 5187 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 17-Jan-2024.)
𝑦𝐵    &   𝑥𝐶    &   (𝑥 = 𝑦𝐵 = 𝐶)       (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
 
Theoremcbvmptg 5187* Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2373. See cbvmpt 5186 for a version with more disjoint variable conditions, but not requiring ax-13 2373. (Contributed by NM, 11-Sep-2011.) (New usage is discouraged.)
𝑦𝐵    &   𝑥𝐶    &   (𝑥 = 𝑦𝐵 = 𝐶)       (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
 
Theoremcbvmptv 5188* Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by Mario Carneiro, 19-Feb-2013.) Add disjoint variable condition to avoid auxiliary axioms . See cbvmptvg 5190 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 17-Nov-2024.)
(𝑥 = 𝑦𝐵 = 𝐶)       (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
 
TheoremcbvmptvOLD 5189* Obsolete version of cbvmptv 5188 as of 17-Nov-2024. (Contributed by Mario Carneiro, 19-Feb-2013.) Add disjoint variable condition to avoid ax-13 2373. See cbvmptvg 5190 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 17-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑥 = 𝑦𝐵 = 𝐶)       (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
 
Theoremcbvmptvg 5190* Rule to change the bound variable in a maps-to function, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2373. See cbvmptv 5188 for a version with more disjoint variable conditions, but not requiring ax-13 2373. (Contributed by Mario Carneiro, 19-Feb-2013.) (New usage is discouraged.)
(𝑥 = 𝑦𝐵 = 𝐶)       (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
 
Theoremmptv 5191* Function with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.)
(𝑥 ∈ V ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐵}
 
2.1.26  Transitive classes
 
Syntaxwtr 5192 Extend wff notation to include transitive classes. Notation from [TakeutiZaring] p. 35.
wff Tr 𝐴
 
Definitiondf-tr 5193 Define the transitive class predicate. Not to be confused with a transitive relation (see cotr 6022). Definition of [Enderton] p. 71 extended to arbitrary classes. For alternate definitions, see dftr2 5194 (which is suggestive of the word "transitive"), dftr3 5196, dftr4 5197, dftr5 5195, and (when 𝐴 is a set) unisuc 6346. The term "complete" is used instead of "transitive" in Definition 3 of [Suppes] p. 130. (Contributed by NM, 29-Aug-1993.)
(Tr 𝐴 𝐴𝐴)
 
Theoremdftr2 5194* An alternate way of defining a transitive class. Exercise 7 of [TakeutiZaring] p. 40. (Contributed by NM, 24-Apr-1994.)
(Tr 𝐴 ↔ ∀𝑥𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
 
Theoremdftr5 5195* An alternate way of defining a transitive class. (Contributed by NM, 20-Mar-2004.)
(Tr 𝐴 ↔ ∀𝑥𝐴𝑦𝑥 𝑦𝐴)
 
Theoremdftr3 5196* An alternate way of defining a transitive class. Definition 7.1 of [TakeutiZaring] p. 35. (Contributed by NM, 29-Aug-1993.)
(Tr 𝐴 ↔ ∀𝑥𝐴 𝑥𝐴)
 
Theoremdftr4 5197 An alternate way of defining a transitive class. Definition of [Enderton] p. 71. (Contributed by NM, 29-Aug-1993.)
(Tr 𝐴𝐴 ⊆ 𝒫 𝐴)
 
Theoremtreq 5198 Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993.)
(𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵))
 
Theoremtrel 5199 In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
(Tr 𝐴 → ((𝐵𝐶𝐶𝐴) → 𝐵𝐴))
 
Theoremtrel3 5200 In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.)
(Tr 𝐴 → ((𝐵𝐶𝐶𝐷𝐷𝐴) → 𝐵𝐴))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >