| Metamath
Proof Explorer Theorem List (p. 52 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | disjor 5101* | Two ways to say that a collection 𝐵(𝑖) for 𝑖 ∈ 𝐴 is disjoint. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by Mario Carneiro, 14-Nov-2016.) |
| ⊢ (𝑖 = 𝑗 → 𝐵 = 𝐶) ⇒ ⊢ (Disj 𝑖 ∈ 𝐴 𝐵 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (𝐵 ∩ 𝐶) = ∅)) | ||
| Theorem | disjors 5102* | Two ways to say that a collection 𝐵(𝑖) for 𝑖 ∈ 𝐴 is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) | ||
| Theorem | disji2 5103* | Property of a disjoint collection: if 𝐵(𝑋) = 𝐶 and 𝐵(𝑌) = 𝐷, and 𝑋 ≠ 𝑌, then 𝐶 and 𝐷 are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) & ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐷) ⇒ ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ 𝑋 ≠ 𝑌) → (𝐶 ∩ 𝐷) = ∅) | ||
| Theorem | disji 5104* | Property of a disjoint collection: if 𝐵(𝑋) = 𝐶 and 𝐵(𝑌) = 𝐷 have a common element 𝑍, then 𝑋 = 𝑌. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) & ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐷) ⇒ ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ (𝑍 ∈ 𝐶 ∧ 𝑍 ∈ 𝐷)) → 𝑋 = 𝑌) | ||
| Theorem | invdisj 5105* | If there is a function 𝐶(𝑦) such that 𝐶(𝑦) = 𝑥 for all 𝑦 ∈ 𝐵(𝑥), then the sets 𝐵(𝑥) for distinct 𝑥 ∈ 𝐴 are disjoint. (Contributed by Mario Carneiro, 10-Dec-2016.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 = 𝑥 → Disj 𝑥 ∈ 𝐴 𝐵) | ||
| Theorem | invdisjrab 5106* | The restricted class abstractions {𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦} for distinct 𝑦 ∈ 𝐴 are disjoint. (Contributed by AV, 6-May-2020.) (Proof shortened by GG, 26-Jan-2024.) |
| ⊢ Disj 𝑦 ∈ 𝐴 {𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦} | ||
| Theorem | disjiun 5107* | A disjoint collection yields disjoint indexed unions for disjoint index sets. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by Mario Carneiro, 14-Nov-2016.) |
| ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ∧ (𝐶 ∩ 𝐷) = ∅)) → (∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪ 𝑥 ∈ 𝐷 𝐵) = ∅) | ||
| Theorem | disjord 5108* | Conditions for a collection of sets 𝐴(𝑎) for 𝑎 ∈ 𝑉 to be disjoint. (Contributed by AV, 9-Jan-2022.) |
| ⊢ (𝑎 = 𝑏 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝑎 = 𝑏) ⇒ ⊢ (𝜑 → Disj 𝑎 ∈ 𝑉 𝐴) | ||
| Theorem | disjiunb 5109* | Two ways to say that a collection of index unions 𝐶(𝑖, 𝑥) for 𝑖 ∈ 𝐴 and 𝑥 ∈ 𝐵 is disjoint. (Contributed by AV, 9-Jan-2022.) |
| ⊢ (𝑖 = 𝑗 → 𝐵 = 𝐷) & ⊢ (𝑖 = 𝑗 → 𝐶 = 𝐸) ⇒ ⊢ (Disj 𝑖 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (∪ 𝑥 ∈ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ 𝐷 𝐸) = ∅)) | ||
| Theorem | disjiund 5110* | Conditions for a collection of index unions of sets 𝐴(𝑎, 𝑏) for 𝑎 ∈ 𝑉 and 𝑏 ∈ 𝑊 to be disjoint. (Contributed by AV, 9-Jan-2022.) |
| ⊢ (𝑎 = 𝑐 → 𝐴 = 𝐶) & ⊢ (𝑏 = 𝑑 → 𝐶 = 𝐷) & ⊢ (𝑎 = 𝑐 → 𝑊 = 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐷) → 𝑎 = 𝑐) ⇒ ⊢ (𝜑 → Disj 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ 𝑊 𝐴) | ||
| Theorem | sndisj 5111 | Any collection of singletons is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| ⊢ Disj 𝑥 ∈ 𝐴 {𝑥} | ||
| Theorem | 0disj 5112 | Any collection of empty sets is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| ⊢ Disj 𝑥 ∈ 𝐴 ∅ | ||
| Theorem | disjxsn 5113* | A singleton collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| ⊢ Disj 𝑥 ∈ {𝐴}𝐵 | ||
| Theorem | disjx0 5114 | An empty collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| ⊢ Disj 𝑥 ∈ ∅ 𝐵 | ||
| Theorem | disjprg 5115* | A pair collection is disjoint iff the two sets in the family have empty intersection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) & ⊢ (𝑥 = 𝐵 → 𝐶 = 𝐸) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) → (Disj 𝑥 ∈ {𝐴, 𝐵}𝐶 ↔ (𝐷 ∩ 𝐸) = ∅)) | ||
| Theorem | disjxiun 5116* | An indexed union of a disjoint collection of disjoint collections is disjoint if each component is disjoint, and the disjoint unions in the collection are also disjoint. Note that 𝐵(𝑦) and 𝐶(𝑥) may have the displayed free variables. (Contributed by Mario Carneiro, 14-Nov-2016.) (Proof shortened by JJ, 27-May-2021.) |
| ⊢ (Disj 𝑦 ∈ 𝐴 𝐵 → (Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵𝐶 ↔ (∀𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶))) | ||
| Theorem | disjxun 5117* | The union of two disjoint collections. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) ⇒ ⊢ ((𝐴 ∩ 𝐵) = ∅ → (Disj 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 ↔ (Disj 𝑥 ∈ 𝐴 𝐶 ∧ Disj 𝑥 ∈ 𝐵 𝐶 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∩ 𝐷) = ∅))) | ||
| Theorem | disjss3 5118* | Expand a disjoint collection with any number of empty sets. (Contributed by Mario Carneiro, 15-Nov-2016.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ ∀𝑥 ∈ (𝐵 ∖ 𝐴)𝐶 = ∅) → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶)) | ||
| Syntax | wbr 5119 | Extend wff notation to include the general binary relation predicate. Note that the syntax is simply three class symbols in a row. Since binary relations are the only possible wff expressions consisting of three class expressions in a row, the syntax is unambiguous. (For an example of how syntax could become ambiguous if we are not careful, see the comment in cneg 11465.) |
| wff 𝐴𝑅𝐵 | ||
| Definition | df-br 5120 | Define a general binary relation. Note that the syntax is simply three class symbols in a row. Definition 6.18 of [TakeutiZaring] p. 29 generalized to arbitrary classes. Class 𝑅 often denotes a relation such as "< " that compares two classes 𝐴 and 𝐵, which might be numbers such as 1 and 2 (see df-ltxr 11272 for the specific definition of <). As a wff, relations are true or false. For example, (𝑅 = {〈2, 6〉, 〈3, 9〉} → 3𝑅9) (ex-br 30358). Often class 𝑅 meets the Rel criteria to be defined in df-rel 5661, and in particular 𝑅 may be a function (see df-fun 6532). This definition of relations is well-defined, although not very meaningful, when classes 𝐴 and/or 𝐵 are proper classes (i.e., are not sets). On the other hand, we often find uses for this definition when 𝑅 is a proper class (see for example iprc 7905). (Contributed by NM, 31-Dec-1993.) |
| ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | ||
| Theorem | breq 5121 | Equality theorem for binary relations. (Contributed by NM, 4-Jun-1995.) |
| ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) | ||
| Theorem | breq1 5122 | Equality theorem for a binary relation. (Contributed by NM, 31-Dec-1993.) |
| ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | ||
| Theorem | breq2 5123 | Equality theorem for a binary relation. (Contributed by NM, 31-Dec-1993.) |
| ⊢ (𝐴 = 𝐵 → (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵)) | ||
| Theorem | breq12 5124 | Equality theorem for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | ||
| Theorem | breqi 5125 | Equality inference for binary relations. (Contributed by NM, 19-Feb-2005.) |
| ⊢ 𝑅 = 𝑆 ⇒ ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵) | ||
| Theorem | breq1i 5126 | Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶) | ||
| Theorem | breq2i 5127 | Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵) | ||
| Theorem | breq12i 5128 | Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
| ⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷) | ||
| Theorem | breq1d 5129 | Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | ||
| Theorem | breqd 5130 | Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) | ||
| Theorem | breq2d 5131 | Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵)) | ||
| Theorem | breq12d 5132 | Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | ||
| Theorem | breq123d 5133 | Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝑅 = 𝑆) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑆𝐷)) | ||
| Theorem | breqdi 5134 | Equality deduction for a binary relation. (Contributed by Thierry Arnoux, 5-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶𝐴𝐷) ⇒ ⊢ (𝜑 → 𝐶𝐵𝐷) | ||
| Theorem | breqan12d 5135 | Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜓 → 𝐶 = 𝐷) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | ||
| Theorem | breqan12rd 5136 | Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜓 → 𝐶 = 𝐷) ⇒ ⊢ ((𝜓 ∧ 𝜑) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | ||
| Theorem | eqnbrtrd 5137 | Substitution of equal classes into the negation of a binary relation. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → ¬ 𝐵𝑅𝐶) ⇒ ⊢ (𝜑 → ¬ 𝐴𝑅𝐶) | ||
| Theorem | nbrne1 5138 | Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.) |
| ⊢ ((𝐴𝑅𝐵 ∧ ¬ 𝐴𝑅𝐶) → 𝐵 ≠ 𝐶) | ||
| Theorem | nbrne2 5139 | Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.) |
| ⊢ ((𝐴𝑅𝐶 ∧ ¬ 𝐵𝑅𝐶) → 𝐴 ≠ 𝐵) | ||
| Theorem | eqbrtri 5140 | Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
| ⊢ 𝐴 = 𝐵 & ⊢ 𝐵𝑅𝐶 ⇒ ⊢ 𝐴𝑅𝐶 | ||
| Theorem | eqbrtrd 5141 | Substitution of equal classes into a binary relation. (Contributed by NM, 8-Oct-1999.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐵𝑅𝐶) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | eqbrtrri 5142 | Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
| ⊢ 𝐴 = 𝐵 & ⊢ 𝐴𝑅𝐶 ⇒ ⊢ 𝐵𝑅𝐶 | ||
| Theorem | eqbrtrrd 5143 | Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐴𝑅𝐶) ⇒ ⊢ (𝜑 → 𝐵𝑅𝐶) | ||
| Theorem | breqtri 5144 | Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
| ⊢ 𝐴𝑅𝐵 & ⊢ 𝐵 = 𝐶 ⇒ ⊢ 𝐴𝑅𝐶 | ||
| Theorem | breqtrd 5145 | Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999.) |
| ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | breqtrri 5146 | Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
| ⊢ 𝐴𝑅𝐵 & ⊢ 𝐶 = 𝐵 ⇒ ⊢ 𝐴𝑅𝐶 | ||
| Theorem | breqtrrd 5147 | Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999.) |
| ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝐶 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | 3brtr3i 5148 | Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.) |
| ⊢ 𝐴𝑅𝐵 & ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ 𝐶𝑅𝐷 | ||
| Theorem | 3brtr4i 5149 | Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.) |
| ⊢ 𝐴𝑅𝐵 & ⊢ 𝐶 = 𝐴 & ⊢ 𝐷 = 𝐵 ⇒ ⊢ 𝐶𝑅𝐷 | ||
| Theorem | 3brtr3d 5150 | Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.) |
| ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → 𝐶𝑅𝐷) | ||
| Theorem | 3brtr4d 5151 | Substitution of equality into both sides of a binary relation. (Contributed by NM, 21-Feb-2005.) |
| ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝐶 = 𝐴) & ⊢ (𝜑 → 𝐷 = 𝐵) ⇒ ⊢ (𝜑 → 𝐶𝑅𝐷) | ||
| Theorem | 3brtr3g 5152 | Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.) |
| ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ (𝜑 → 𝐶𝑅𝐷) | ||
| Theorem | 3brtr4g 5153 | Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.) |
| ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ 𝐶 = 𝐴 & ⊢ 𝐷 = 𝐵 ⇒ ⊢ (𝜑 → 𝐶𝑅𝐷) | ||
| Theorem | eqbrtrid 5154 | A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
| ⊢ 𝐴 = 𝐵 & ⊢ (𝜑 → 𝐵𝑅𝐶) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | eqbrtrrid 5155 | A chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004.) |
| ⊢ 𝐵 = 𝐴 & ⊢ (𝜑 → 𝐵𝑅𝐶) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | breqtrid 5156 | A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
| ⊢ 𝐴𝑅𝐵 & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | breqtrrid 5157 | A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.) |
| ⊢ 𝐴𝑅𝐵 & ⊢ (𝜑 → 𝐶 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | eqbrtrdi 5158 | A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ 𝐵𝑅𝐶 ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | eqbrtrrdi 5159 | A chained equality inference for a binary relation. (Contributed by NM, 4-Jan-2006.) |
| ⊢ (𝜑 → 𝐵 = 𝐴) & ⊢ 𝐵𝑅𝐶 ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | breqtrdi 5160 | A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
| ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ 𝐵 = 𝐶 ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | breqtrrdi 5161 | A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.) |
| ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ 𝐶 = 𝐵 ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | ssbrd 5162 | Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) | ||
| Theorem | ssbr 5163 | Implication from a subclass relationship of binary relations. (Contributed by Peter Mazsa, 11-Nov-2019.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) | ||
| Theorem | ssbri 5164 | Inference from a subclass relationship of binary relations. (Contributed by NM, 28-Mar-2007.) (Revised by Mario Carneiro, 8-Feb-2015.) |
| ⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) | ||
| Theorem | nfbrd 5165 | Deduction version of bound-variable hypothesis builder nfbr 5166. (Contributed by NM, 13-Dec-2005.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝑅) & ⊢ (𝜑 → Ⅎ𝑥𝐵) ⇒ ⊢ (𝜑 → Ⅎ𝑥 𝐴𝑅𝐵) | ||
| Theorem | nfbr 5166 | Bound-variable hypothesis builder for binary relation. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥 𝐴𝑅𝐵 | ||
| Theorem | brab1 5167* | Relationship between a binary relation and a class abstraction. (Contributed by Andrew Salmon, 8-Jul-2011.) |
| ⊢ (𝑥𝑅𝐴 ↔ 𝑥 ∈ {𝑧 ∣ 𝑧𝑅𝐴}) | ||
| Theorem | br0 5168 | The empty binary relation never holds. (Contributed by NM, 23-Aug-2018.) |
| ⊢ ¬ 𝐴∅𝐵 | ||
| Theorem | brne0 5169 | If two sets are in a binary relation, the relation cannot be empty. (Contributed by Alexander van der Vekens, 7-Jul-2018.) |
| ⊢ (𝐴𝑅𝐵 → 𝑅 ≠ ∅) | ||
| Theorem | brun 5170 | The union of two binary relations. (Contributed by NM, 21-Dec-2008.) |
| ⊢ (𝐴(𝑅 ∪ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∨ 𝐴𝑆𝐵)) | ||
| Theorem | brin 5171 | The intersection of two relations. (Contributed by FL, 7-Oct-2008.) |
| ⊢ (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ 𝐴𝑆𝐵)) | ||
| Theorem | brdif 5172 | The difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2011.) |
| ⊢ (𝐴(𝑅 ∖ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ ¬ 𝐴𝑆𝐵)) | ||
| Theorem | sbcbr123 5173 | Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) (Revised by NM, 22-Aug-2018.) |
| ⊢ ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝑅⦋𝐴 / 𝑥⦌𝐶) | ||
| Theorem | sbcbr 5174* | Move substitution in and out of a binary relation. (Contributed by NM, 23-Aug-2018.) |
| ⊢ ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ 𝐵⦋𝐴 / 𝑥⦌𝑅𝐶) | ||
| Theorem | sbcbr12g 5175* | Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵𝑅⦋𝐴 / 𝑥⦌𝐶)) | ||
| Theorem | sbcbr1g 5176* | Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵𝑅𝐶)) | ||
| Theorem | sbcbr2g 5177* | Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ 𝐵𝑅⦋𝐴 / 𝑥⦌𝐶)) | ||
| Theorem | brsymdif 5178 | Characterization of the symmetric difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2012.) |
| ⊢ (𝐴(𝑅 △ 𝑆)𝐵 ↔ ¬ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) | ||
| Theorem | brralrspcev 5179* | Restricted existential specialization with a restricted universal quantifier over a relation, closed form. (Contributed by AV, 20-Aug-2022.) |
| ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) | ||
| Theorem | brimralrspcev 5180* | Restricted existential specialization with a restricted universal quantifier over an implication with a relation in the antecedent, closed form. (Contributed by AV, 20-Aug-2022.) |
| ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 ((𝜑 ∧ 𝐴𝑅𝐵) → 𝜓)) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝜑 ∧ 𝐴𝑅𝑥) → 𝜓)) | ||
| Syntax | copab 5181 | Extend class notation to include ordered-pair class abstraction (class builder). |
| class {〈𝑥, 𝑦〉 ∣ 𝜑} | ||
| Definition | df-opab 5182* | Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually 𝑥 and 𝑦 are distinct, although the definition does not require it (see dfid2 5550 for a case where they are not distinct). The brace notation is called "class abstraction" by Quine; it is also called "class builder" in the literature. An alternate definition using no existential quantifiers is shown by dfopab2 8049. An example is given by ex-opab 30359. (Contributed by NM, 4-Jul-1994.) |
| ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | ||
| Theorem | opabss 5183* | The collection of ordered pairs in a class is a subclass of it. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} ⊆ 𝑅 | ||
| Theorem | opabbid 5184 | Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) | ||
| Theorem | opabbidv 5185* | Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) | ||
| Theorem | opabbii 5186 | Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.) |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} | ||
| Theorem | nfopabd 5187* | Bound-variable hypothesis builder for class abstraction. Deduction form. (Contributed by Scott Fenton, 26-Oct-2024.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑧𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑧{〈𝑥, 𝑦〉 ∣ 𝜓}) | ||
| Theorem | nfopab 5188* | Bound-variable hypothesis builder for class abstraction. (Contributed by NM, 1-Sep-1999.) Remove disjoint variable conditions. (Revised by Andrew Salmon, 11-Jul-2011.) (Revised by Scott Fenton, 26-Oct-2024.) |
| ⊢ Ⅎ𝑧𝜑 ⇒ ⊢ Ⅎ𝑧{〈𝑥, 𝑦〉 ∣ 𝜑} | ||
| Theorem | nfopab1 5189 | The first abstraction variable in an ordered-pair class abstraction is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} | ||
| Theorem | nfopab2 5190 | The second abstraction variable in an ordered-pair class abstraction is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} | ||
| Theorem | cbvopab 5191* | Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 14-Sep-2003.) |
| ⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑤𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜓 & ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑤〉 ∣ 𝜓} | ||
| Theorem | cbvopabv 5192* | Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 15-Oct-1996.) Reduce axiom usage. (Revised by GG, 15-Oct-2024.) |
| ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑤〉 ∣ 𝜓} | ||
| Theorem | cbvopab1 5193* | Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 6-Oct-2004.) (Revised by Mario Carneiro, 14-Oct-2016.) Add disjoint variable condition to avoid ax-13 2376. See cbvopab1g 5194 for a less restrictive version requiring more axioms. (Revised by GG, 17-Jan-2024.) |
| ⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ 𝜓} | ||
| Theorem | cbvopab1g 5194* | Change first bound variable in an ordered-pair class abstraction, using explicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2376. See cbvopab1 5193 for a version with more disjoint variable conditions, but not requiring ax-13 2376. (Contributed by NM, 6-Oct-2004.) (Revised by Mario Carneiro, 14-Oct-2016.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ 𝜓} | ||
| Theorem | cbvopab2 5195* | Change second bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 22-Aug-2013.) |
| ⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑦𝜓 & ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑧〉 ∣ 𝜓} | ||
| Theorem | cbvopab1s 5196* | Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 31-Jul-2003.) |
| ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ [𝑧 / 𝑥]𝜑} | ||
| Theorem | cbvopab1v 5197* | Rule used to change the first bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) Reduce axiom usage. (Revised by GG, 17-Nov-2024.) |
| ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ 𝜓} | ||
| Theorem | cbvopab1vOLD 5198* | Obsolete version of cbvopab1v 5197 as of 17-Nov-2024. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ 𝜓} | ||
| Theorem | cbvopab2v 5199* | Rule used to change the second bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 2-Sep-1999.) |
| ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑧〉 ∣ 𝜓} | ||
| Theorem | unopab 5200 | Union of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.) |
| ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∪ {〈𝑥, 𝑦〉 ∣ 𝜓}) = {〈𝑥, 𝑦〉 ∣ (𝜑 ∨ 𝜓)} | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |