![]() |
Metamath
Proof Explorer Theorem List (p. 52 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | iinin2 5101* | Indexed intersection of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use intiin 5082 to recover Enderton's theorem. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = (𝐵 ∩ ∩ 𝑥 ∈ 𝐴 𝐶)) | ||
Theorem | iinin1 5102* | Indexed intersection of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use intiin 5082 to recover Enderton's theorem. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 (𝐶 ∩ 𝐵) = (∩ 𝑥 ∈ 𝐴 𝐶 ∩ 𝐵)) | ||
Theorem | iinvdif 5103* | The indexed intersection of a complement. (Contributed by Gérard Lang, 5-Aug-2018.) |
⊢ ∩ 𝑥 ∈ 𝐴 (V ∖ 𝐵) = (V ∖ ∪ 𝑥 ∈ 𝐴 𝐵) | ||
Theorem | elriin 5104* | Elementhood in a relative intersection. (Contributed by Mario Carneiro, 30-Dec-2016.) |
⊢ (𝐵 ∈ (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) ↔ (𝐵 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑆)) | ||
Theorem | riin0 5105* | Relative intersection of an empty family. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) = 𝐴) | ||
Theorem | riinn0 5106* | Relative intersection of a nonempty family. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
⊢ ((∀𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ 𝑋 ≠ ∅) → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) = ∩ 𝑥 ∈ 𝑋 𝑆) | ||
Theorem | riinrab 5107* | Relative intersection of a relative abstraction. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
⊢ (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑}) = {𝑦 ∈ 𝐴 ∣ ∀𝑥 ∈ 𝑋 𝜑} | ||
Theorem | symdif0 5108 | Symmetric difference with the empty class. The empty class is the identity element for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012.) |
⊢ (𝐴 △ ∅) = 𝐴 | ||
Theorem | symdifv 5109 | The symmetric difference with the universal class is the complement. (Contributed by Scott Fenton, 24-Apr-2012.) |
⊢ (𝐴 △ V) = (V ∖ 𝐴) | ||
Theorem | symdifid 5110 | The symmetric difference of a class with itself is the empty class. (Contributed by Scott Fenton, 25-Apr-2012.) |
⊢ (𝐴 △ 𝐴) = ∅ | ||
Theorem | iinxsng 5111* | A singleton index picks out an instance of an indexed intersection's argument. (Contributed by NM, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝐴 ∈ 𝑉 → ∩ 𝑥 ∈ {𝐴}𝐵 = 𝐶) | ||
Theorem | iinxprg 5112* | Indexed intersection with an unordered pair index. (Contributed by NM, 25-Jan-2012.) |
⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) & ⊢ (𝑥 = 𝐵 → 𝐶 = 𝐸) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∩ 𝑥 ∈ {𝐴, 𝐵}𝐶 = (𝐷 ∩ 𝐸)) | ||
Theorem | iunxsng 5113* | A singleton index picks out an instance of an indexed union's argument. (Contributed by Mario Carneiro, 25-Jun-2016.) |
⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝐴 ∈ 𝑉 → ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶) | ||
Theorem | iunxsn 5114* | A singleton index picks out an instance of an indexed union's argument. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Mario Carneiro, 25-Jun-2016.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 | ||
Theorem | iunxsngf 5115* | A singleton index picks out an instance of an indexed union's argument. (Contributed by Mario Carneiro, 25-Jun-2016.) (Revised by Thierry Arnoux, 2-May-2020.) Avoid ax-13 2380. (Revised by GG, 19-May-2023.) |
⊢ Ⅎ𝑥𝐶 & ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝐴 ∈ 𝑉 → ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶) | ||
Theorem | iunun 5116 | Separate a union in an indexed union. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∪ 𝐶) = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ 𝐴 𝐶) | ||
Theorem | iunxun 5117 | Separate a union in the index of an indexed union. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
⊢ ∪ 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 = (∪ 𝑥 ∈ 𝐴 𝐶 ∪ ∪ 𝑥 ∈ 𝐵 𝐶) | ||
Theorem | iunxdif3 5118* | An indexed union where some terms are the empty set. See iunxdif2 5076. (Contributed by Thierry Arnoux, 4-May-2020.) |
⊢ Ⅎ𝑥𝐸 ⇒ ⊢ (∀𝑥 ∈ 𝐸 𝐵 = ∅ → ∪ 𝑥 ∈ (𝐴 ∖ 𝐸)𝐵 = ∪ 𝑥 ∈ 𝐴 𝐵) | ||
Theorem | iunxprg 5119* | A pair index picks out two instances of an indexed union's argument. (Contributed by Alexander van der Vekens, 2-Feb-2018.) |
⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) & ⊢ (𝑥 = 𝐵 → 𝐶 = 𝐸) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ {𝐴, 𝐵}𝐶 = (𝐷 ∪ 𝐸)) | ||
Theorem | iunxiun 5120* | Separate an indexed union in the index of an indexed union. (Contributed by Mario Carneiro, 5-Dec-2016.) |
⊢ ∪ 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵𝐶 = ∪ 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 | ||
Theorem | iinuni 5121* | A relationship involving union and indexed intersection. Exercise 23 of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
⊢ (𝐴 ∪ ∩ 𝐵) = ∩ 𝑥 ∈ 𝐵 (𝐴 ∪ 𝑥) | ||
Theorem | iununi 5122* | A relationship involving union and indexed union. Exercise 25 of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
⊢ ((𝐵 = ∅ → 𝐴 = ∅) ↔ (𝐴 ∪ ∪ 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ∪ 𝑥)) | ||
Theorem | sspwuni 5123 | Subclass relationship for power class and union. (Contributed by NM, 18-Jul-2006.) |
⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) | ||
Theorem | pwssb 5124* | Two ways to express a collection of subclasses. (Contributed by NM, 19-Jul-2006.) |
⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) | ||
Theorem | elpwpw 5125 | Characterization of the elements of a double power class: they are exactly the sets whose union is included in that class. (Contributed by BJ, 29-Apr-2021.) |
⊢ (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ (𝐴 ∈ V ∧ ∪ 𝐴 ⊆ 𝐵)) | ||
Theorem | pwpwab 5126* | The double power class written as a class abstraction: the class of sets whose union is included in the given class. (Contributed by BJ, 29-Apr-2021.) |
⊢ 𝒫 𝒫 𝐴 = {𝑥 ∣ ∪ 𝑥 ⊆ 𝐴} | ||
Theorem | pwpwssunieq 5127* | The class of sets whose union is equal to a given class is included in the double power class of that class. (Contributed by BJ, 29-Apr-2021.) |
⊢ {𝑥 ∣ ∪ 𝑥 = 𝐴} ⊆ 𝒫 𝒫 𝐴 | ||
Theorem | elpwuni 5128 | Relationship for power class and union. (Contributed by NM, 18-Jul-2006.) |
⊢ (𝐵 ∈ 𝐴 → (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 = 𝐵)) | ||
Theorem | iinpw 5129* | The power class of an intersection in terms of indexed intersection. Exercise 24(a) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.) |
⊢ 𝒫 ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝒫 𝑥 | ||
Theorem | iunpwss 5130* | Inclusion of an indexed union of a power class in the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.) |
⊢ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ⊆ 𝒫 ∪ 𝐴 | ||
Theorem | intss2 5131 | A nonempty intersection of a family of subsets of a class is included in that class. (Contributed by BJ, 7-Dec-2021.) |
⊢ (𝐴 ⊆ 𝒫 𝑋 → (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ 𝑋)) | ||
Theorem | rintn0 5132 | Relative intersection of a nonempty set. (Contributed by Stefan O'Rear, 3-Apr-2015.) (Revised by Mario Carneiro, 5-Jun-2015.) |
⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅) → (𝐴 ∩ ∩ 𝑋) = ∩ 𝑋) | ||
Syntax | wdisj 5133 | Extend wff notation to include the statement that a family of classes 𝐵(𝑥), for 𝑥 ∈ 𝐴, is a disjoint family. |
wff Disj 𝑥 ∈ 𝐴 𝐵 | ||
Definition | df-disj 5134* | A collection of classes 𝐵(𝑥) is disjoint when for each element 𝑦, it is in 𝐵(𝑥) for at most one 𝑥. (Contributed by Mario Carneiro, 14-Nov-2016.) (Revised by NM, 16-Jun-2017.) |
⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | ||
Theorem | dfdisj2 5135* | Alternate definition for disjoint classes. (Contributed by NM, 17-Jun-2017.) |
⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | ||
Theorem | disjss2 5136 | If each element of a collection is contained in a disjoint collection, the original collection is also disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐴 𝐵)) | ||
Theorem | disjeq2 5137 | Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑥 ∈ 𝐴 𝐶)) | ||
Theorem | disjeq2dv 5138* | Equality deduction for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑥 ∈ 𝐴 𝐶)) | ||
Theorem | disjss1 5139* | A subset of a disjoint collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
⊢ (𝐴 ⊆ 𝐵 → (Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐴 𝐶)) | ||
Theorem | disjeq1 5140* | Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
⊢ (𝐴 = 𝐵 → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶)) | ||
Theorem | disjeq1d 5141* | Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶)) | ||
Theorem | disjeq12d 5142* | Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐷)) | ||
Theorem | cbvdisj 5143* | Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝐶 & ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶) | ||
Theorem | cbvdisjv 5144* | Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 11-Dec-2016.) |
⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶) | ||
Theorem | nfdisjw 5145* | Bound-variable hypothesis builder for disjoint collection. Version of nfdisj 5146 with a disjoint variable condition, which does not require ax-13 2380. (Contributed by Mario Carneiro, 14-Nov-2016.) Avoid ax-13 2380. (Revised by GG, 26-Jan-2024.) |
⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 ⇒ ⊢ Ⅎ𝑦Disj 𝑥 ∈ 𝐴 𝐵 | ||
Theorem | nfdisj 5146 | Bound-variable hypothesis builder for disjoint collection. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker nfdisjw 5145 when possible. (Contributed by Mario Carneiro, 14-Nov-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 ⇒ ⊢ Ⅎ𝑦Disj 𝑥 ∈ 𝐴 𝐵 | ||
Theorem | nfdisj1 5147 | Bound-variable hypothesis builder for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
⊢ Ⅎ𝑥Disj 𝑥 ∈ 𝐴 𝐵 | ||
Theorem | disjor 5148* | Two ways to say that a collection 𝐵(𝑖) for 𝑖 ∈ 𝐴 is disjoint. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by Mario Carneiro, 14-Nov-2016.) |
⊢ (𝑖 = 𝑗 → 𝐵 = 𝐶) ⇒ ⊢ (Disj 𝑖 ∈ 𝐴 𝐵 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (𝐵 ∩ 𝐶) = ∅)) | ||
Theorem | disjors 5149* | Two ways to say that a collection 𝐵(𝑖) for 𝑖 ∈ 𝐴 is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) | ||
Theorem | disji2 5150* | Property of a disjoint collection: if 𝐵(𝑋) = 𝐶 and 𝐵(𝑌) = 𝐷, and 𝑋 ≠ 𝑌, then 𝐶 and 𝐷 are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) & ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐷) ⇒ ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ 𝑋 ≠ 𝑌) → (𝐶 ∩ 𝐷) = ∅) | ||
Theorem | disji 5151* | Property of a disjoint collection: if 𝐵(𝑋) = 𝐶 and 𝐵(𝑌) = 𝐷 have a common element 𝑍, then 𝑋 = 𝑌. (Contributed by Mario Carneiro, 14-Nov-2016.) |
⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) & ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐷) ⇒ ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ (𝑍 ∈ 𝐶 ∧ 𝑍 ∈ 𝐷)) → 𝑋 = 𝑌) | ||
Theorem | invdisj 5152* | If there is a function 𝐶(𝑦) such that 𝐶(𝑦) = 𝑥 for all 𝑦 ∈ 𝐵(𝑥), then the sets 𝐵(𝑥) for distinct 𝑥 ∈ 𝐴 are disjoint. (Contributed by Mario Carneiro, 10-Dec-2016.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 = 𝑥 → Disj 𝑥 ∈ 𝐴 𝐵) | ||
Theorem | invdisjrab 5153* | The restricted class abstractions {𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦} for distinct 𝑦 ∈ 𝐴 are disjoint. (Contributed by AV, 6-May-2020.) (Proof shortened by GG, 26-Jan-2024.) |
⊢ Disj 𝑦 ∈ 𝐴 {𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦} | ||
Theorem | disjiun 5154* | A disjoint collection yields disjoint indexed unions for disjoint index sets. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by Mario Carneiro, 14-Nov-2016.) |
⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ∧ (𝐶 ∩ 𝐷) = ∅)) → (∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪ 𝑥 ∈ 𝐷 𝐵) = ∅) | ||
Theorem | disjord 5155* | Conditions for a collection of sets 𝐴(𝑎) for 𝑎 ∈ 𝑉 to be disjoint. (Contributed by AV, 9-Jan-2022.) |
⊢ (𝑎 = 𝑏 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝑎 = 𝑏) ⇒ ⊢ (𝜑 → Disj 𝑎 ∈ 𝑉 𝐴) | ||
Theorem | disjiunb 5156* | Two ways to say that a collection of index unions 𝐶(𝑖, 𝑥) for 𝑖 ∈ 𝐴 and 𝑥 ∈ 𝐵 is disjoint. (Contributed by AV, 9-Jan-2022.) |
⊢ (𝑖 = 𝑗 → 𝐵 = 𝐷) & ⊢ (𝑖 = 𝑗 → 𝐶 = 𝐸) ⇒ ⊢ (Disj 𝑖 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (∪ 𝑥 ∈ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ 𝐷 𝐸) = ∅)) | ||
Theorem | disjiund 5157* | Conditions for a collection of index unions of sets 𝐴(𝑎, 𝑏) for 𝑎 ∈ 𝑉 and 𝑏 ∈ 𝑊 to be disjoint. (Contributed by AV, 9-Jan-2022.) |
⊢ (𝑎 = 𝑐 → 𝐴 = 𝐶) & ⊢ (𝑏 = 𝑑 → 𝐶 = 𝐷) & ⊢ (𝑎 = 𝑐 → 𝑊 = 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐷) → 𝑎 = 𝑐) ⇒ ⊢ (𝜑 → Disj 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ 𝑊 𝐴) | ||
Theorem | sndisj 5158 | Any collection of singletons is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
⊢ Disj 𝑥 ∈ 𝐴 {𝑥} | ||
Theorem | 0disj 5159 | Any collection of empty sets is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
⊢ Disj 𝑥 ∈ 𝐴 ∅ | ||
Theorem | disjxsn 5160* | A singleton collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
⊢ Disj 𝑥 ∈ {𝐴}𝐵 | ||
Theorem | disjx0 5161 | An empty collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
⊢ Disj 𝑥 ∈ ∅ 𝐵 | ||
Theorem | disjprg 5162* | A pair collection is disjoint iff the two sets in the family have empty intersection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) & ⊢ (𝑥 = 𝐵 → 𝐶 = 𝐸) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) → (Disj 𝑥 ∈ {𝐴, 𝐵}𝐶 ↔ (𝐷 ∩ 𝐸) = ∅)) | ||
Theorem | disjxiun 5163* | An indexed union of a disjoint collection of disjoint collections is disjoint if each component is disjoint, and the disjoint unions in the collection are also disjoint. Note that 𝐵(𝑦) and 𝐶(𝑥) may have the displayed free variables. (Contributed by Mario Carneiro, 14-Nov-2016.) (Proof shortened by JJ, 27-May-2021.) |
⊢ (Disj 𝑦 ∈ 𝐴 𝐵 → (Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵𝐶 ↔ (∀𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶))) | ||
Theorem | disjxun 5164* | The union of two disjoint collections. (Contributed by Mario Carneiro, 14-Nov-2016.) |
⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) ⇒ ⊢ ((𝐴 ∩ 𝐵) = ∅ → (Disj 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 ↔ (Disj 𝑥 ∈ 𝐴 𝐶 ∧ Disj 𝑥 ∈ 𝐵 𝐶 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∩ 𝐷) = ∅))) | ||
Theorem | disjss3 5165* | Expand a disjoint collection with any number of empty sets. (Contributed by Mario Carneiro, 15-Nov-2016.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ ∀𝑥 ∈ (𝐵 ∖ 𝐴)𝐶 = ∅) → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶)) | ||
Syntax | wbr 5166 | Extend wff notation to include the general binary relation predicate. Note that the syntax is simply three class symbols in a row. Since binary relations are the only possible wff expressions consisting of three class expressions in a row, the syntax is unambiguous. (For an example of how syntax could become ambiguous if we are not careful, see the comment in cneg 11521.) |
wff 𝐴𝑅𝐵 | ||
Definition | df-br 5167 | Define a general binary relation. Note that the syntax is simply three class symbols in a row. Definition 6.18 of [TakeutiZaring] p. 29 generalized to arbitrary classes. Class 𝑅 often denotes a relation such as "< " that compares two classes 𝐴 and 𝐵, which might be numbers such as 1 and 2 (see df-ltxr 11329 for the specific definition of <). As a wff, relations are true or false. For example, (𝑅 = {〈2, 6〉, 〈3, 9〉} → 3𝑅9) (ex-br 30463). Often class 𝑅 meets the Rel criteria to be defined in df-rel 5707, and in particular 𝑅 may be a function (see df-fun 6575). This definition of relations is well-defined, although not very meaningful, when classes 𝐴 and/or 𝐵 are proper classes (i.e., are not sets). On the other hand, we often find uses for this definition when 𝑅 is a proper class (see for example iprc 7951). (Contributed by NM, 31-Dec-1993.) |
⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | ||
Theorem | breq 5168 | Equality theorem for binary relations. (Contributed by NM, 4-Jun-1995.) |
⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) | ||
Theorem | breq1 5169 | Equality theorem for a binary relation. (Contributed by NM, 31-Dec-1993.) |
⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | ||
Theorem | breq2 5170 | Equality theorem for a binary relation. (Contributed by NM, 31-Dec-1993.) |
⊢ (𝐴 = 𝐵 → (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵)) | ||
Theorem | breq12 5171 | Equality theorem for a binary relation. (Contributed by NM, 8-Feb-1996.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | ||
Theorem | breqi 5172 | Equality inference for binary relations. (Contributed by NM, 19-Feb-2005.) |
⊢ 𝑅 = 𝑆 ⇒ ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵) | ||
Theorem | breq1i 5173 | Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶) | ||
Theorem | breq2i 5174 | Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵) | ||
Theorem | breq12i 5175 | Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷) | ||
Theorem | breq1d 5176 | Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | ||
Theorem | breqd 5177 | Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) | ||
Theorem | breq2d 5178 | Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵)) | ||
Theorem | breq12d 5179 | Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | ||
Theorem | breq123d 5180 | Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝑅 = 𝑆) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑆𝐷)) | ||
Theorem | breqdi 5181 | Equality deduction for a binary relation. (Contributed by Thierry Arnoux, 5-Oct-2020.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶𝐴𝐷) ⇒ ⊢ (𝜑 → 𝐶𝐵𝐷) | ||
Theorem | breqan12d 5182 | Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜓 → 𝐶 = 𝐷) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | ||
Theorem | breqan12rd 5183 | Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜓 → 𝐶 = 𝐷) ⇒ ⊢ ((𝜓 ∧ 𝜑) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | ||
Theorem | eqnbrtrd 5184 | Substitution of equal classes into the negation of a binary relation. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → ¬ 𝐵𝑅𝐶) ⇒ ⊢ (𝜑 → ¬ 𝐴𝑅𝐶) | ||
Theorem | nbrne1 5185 | Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.) |
⊢ ((𝐴𝑅𝐵 ∧ ¬ 𝐴𝑅𝐶) → 𝐵 ≠ 𝐶) | ||
Theorem | nbrne2 5186 | Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.) |
⊢ ((𝐴𝑅𝐶 ∧ ¬ 𝐵𝑅𝐶) → 𝐴 ≠ 𝐵) | ||
Theorem | eqbrtri 5187 | Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐵𝑅𝐶 ⇒ ⊢ 𝐴𝑅𝐶 | ||
Theorem | eqbrtrd 5188 | Substitution of equal classes into a binary relation. (Contributed by NM, 8-Oct-1999.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐵𝑅𝐶) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
Theorem | eqbrtrri 5189 | Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐴𝑅𝐶 ⇒ ⊢ 𝐵𝑅𝐶 | ||
Theorem | eqbrtrrd 5190 | Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐴𝑅𝐶) ⇒ ⊢ (𝜑 → 𝐵𝑅𝐶) | ||
Theorem | breqtri 5191 | Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
⊢ 𝐴𝑅𝐵 & ⊢ 𝐵 = 𝐶 ⇒ ⊢ 𝐴𝑅𝐶 | ||
Theorem | breqtrd 5192 | Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999.) |
⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
Theorem | breqtrri 5193 | Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
⊢ 𝐴𝑅𝐵 & ⊢ 𝐶 = 𝐵 ⇒ ⊢ 𝐴𝑅𝐶 | ||
Theorem | breqtrrd 5194 | Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999.) |
⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝐶 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
Theorem | 3brtr3i 5195 | Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.) |
⊢ 𝐴𝑅𝐵 & ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ 𝐶𝑅𝐷 | ||
Theorem | 3brtr4i 5196 | Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.) |
⊢ 𝐴𝑅𝐵 & ⊢ 𝐶 = 𝐴 & ⊢ 𝐷 = 𝐵 ⇒ ⊢ 𝐶𝑅𝐷 | ||
Theorem | 3brtr3d 5197 | Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.) |
⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → 𝐶𝑅𝐷) | ||
Theorem | 3brtr4d 5198 | Substitution of equality into both sides of a binary relation. (Contributed by NM, 21-Feb-2005.) |
⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝐶 = 𝐴) & ⊢ (𝜑 → 𝐷 = 𝐵) ⇒ ⊢ (𝜑 → 𝐶𝑅𝐷) | ||
Theorem | 3brtr3g 5199 | Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.) |
⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ (𝜑 → 𝐶𝑅𝐷) | ||
Theorem | 3brtr4g 5200 | Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.) |
⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ 𝐶 = 𝐴 & ⊢ 𝐷 = 𝐵 ⇒ ⊢ (𝜑 → 𝐶𝑅𝐷) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |