HomeHome Metamath Proof Explorer
Theorem List (p. 52 of 449)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28689)
  Hilbert Space Explorer  Hilbert Space Explorer
(28690-30212)
  Users' Mathboxes  Users' Mathboxes
(30213-44900)
 

Theorem List for Metamath Proof Explorer - 5101-5200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremssbrd 5101 Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004.)
(𝜑𝐴𝐵)       (𝜑 → (𝐶𝐴𝐷𝐶𝐵𝐷))
 
Theoremssbr 5102 Implication from a subclass relationship of binary relations. (Contributed by Peter Mazsa, 11-Nov-2019.)
(𝐴𝐵 → (𝐶𝐴𝐷𝐶𝐵𝐷))
 
Theoremssbri 5103 Inference from a subclass relationship of binary relations. (Contributed by NM, 28-Mar-2007.) (Revised by Mario Carneiro, 8-Feb-2015.)
𝐴𝐵       (𝐶𝐴𝐷𝐶𝐵𝐷)
 
Theoremnfbrd 5104 Deduction version of bound-variable hypothesis builder nfbr 5105. (Contributed by NM, 13-Dec-2005.) (Revised by Mario Carneiro, 14-Oct-2016.)
(𝜑𝑥𝐴)    &   (𝜑𝑥𝑅)    &   (𝜑𝑥𝐵)       (𝜑 → Ⅎ𝑥 𝐴𝑅𝐵)
 
Theoremnfbr 5105 Bound-variable hypothesis builder for binary relation. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 14-Oct-2016.)
𝑥𝐴    &   𝑥𝑅    &   𝑥𝐵       𝑥 𝐴𝑅𝐵
 
Theorembrab1 5106* Relationship between a binary relation and a class abstraction. (Contributed by Andrew Salmon, 8-Jul-2011.)
(𝑥𝑅𝐴𝑥 ∈ {𝑧𝑧𝑅𝐴})
 
Theorembr0 5107 The empty binary relation never holds. (Contributed by NM, 23-Aug-2018.)
¬ 𝐴𝐵
 
Theorembrne0 5108 If two sets are in a binary relation, the relation cannot be empty. (Contributed by Alexander van der Vekens, 7-Jul-2018.)
(𝐴𝑅𝐵𝑅 ≠ ∅)
 
Theorembrun 5109 The union of two binary relations. (Contributed by NM, 21-Dec-2008.)
(𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵𝐴𝑆𝐵))
 
Theorembrin 5110 The intersection of two relations. (Contributed by FL, 7-Oct-2008.)
(𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵𝐴𝑆𝐵))
 
Theorembrdif 5111 The difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2011.)
(𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ ¬ 𝐴𝑆𝐵))
 
Theoremsbcbr123 5112 Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) (Revised by NM, 22-Aug-2018.)
([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝑅𝐴 / 𝑥𝐶)
 
Theoremsbcbr 5113* Move substitution in and out of a binary relation. (Contributed by NM, 23-Aug-2018.)
([𝐴 / 𝑥]𝐵𝑅𝐶𝐵𝐴 / 𝑥𝑅𝐶)
 
Theoremsbcbr12g 5114* Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 / 𝑥𝐵𝑅𝐴 / 𝑥𝐶))
 
Theoremsbcbr1g 5115* Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 / 𝑥𝐵𝑅𝐶))
 
Theoremsbcbr2g 5116* Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐵𝑅𝐴 / 𝑥𝐶))
 
Theorembrsymdif 5117 Characterization of the symmetric difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2012.)
(𝐴(𝑅𝑆)𝐵 ↔ ¬ (𝐴𝑅𝐵𝐴𝑆𝐵))
 
Theorembrralrspcev 5118* Restricted existential specialization with a restricted universal quantifier over a relation, closed form. (Contributed by AV, 20-Aug-2022.)
((𝐵𝑋 ∧ ∀𝑦𝑌 𝐴𝑅𝐵) → ∃𝑥𝑋𝑦𝑌 𝐴𝑅𝑥)
 
Theorembrimralrspcev 5119* Restricted existential specialization with a restricted universal quantifier over an implication with a relation in the antecedent, closed form. (Contributed by AV, 20-Aug-2022.)
((𝐵𝑋 ∧ ∀𝑦𝑌 ((𝜑𝐴𝑅𝐵) → 𝜓)) → ∃𝑥𝑋𝑦𝑌 ((𝜑𝐴𝑅𝑥) → 𝜓))
 
2.1.24  Ordered-pair class abstractions (class builders)
 
Syntaxcopab 5120 Extend class notation to include ordered-pair class abstraction (class builder).
class {⟨𝑥, 𝑦⟩ ∣ 𝜑}
 
Definitiondf-opab 5121* Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually 𝑥 and 𝑦 are distinct, although the definition does not require it (see dfid2 5457 for a case where they are not distinct). The brace notation is called "class abstraction" by Quine; it is also called "class builder" in the literature. An alternate definition using no existential quantifiers is shown by dfopab2 7744. An example is given by ex-opab 28205. (Contributed by NM, 4-Jul-1994.)
{⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
 
Theoremopabss 5122* The collection of ordered pairs in a class is a subclass of it. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
{⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} ⊆ 𝑅
 
Theoremopabbid 5123 Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
𝑥𝜑    &   𝑦𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑥, 𝑦⟩ ∣ 𝜒})
 
Theoremopabbidv 5124* Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.)
(𝜑 → (𝜓𝜒))       (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑥, 𝑦⟩ ∣ 𝜒})
 
Theoremopabbii 5125 Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.)
(𝜑𝜓)       {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ 𝜓}
 
Theoremnfopab 5126* Bound-variable hypothesis builder for class abstraction. (Contributed by NM, 1-Sep-1999.) Remove disjoint variable conditions. (Revised by Andrew Salmon, 11-Jul-2011.)
𝑧𝜑       𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}
 
Theoremnfopab1 5127 The first abstraction variable in an ordered-pair class abstraction (class builder) is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}
 
Theoremnfopab2 5128 The second abstraction variable in an ordered-pair class abstraction (class builder) is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}
 
Theoremcbvopab 5129* Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 14-Sep-2003.)
𝑧𝜑    &   𝑤𝜑    &   𝑥𝜓    &   𝑦𝜓    &   ((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))       {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑤⟩ ∣ 𝜓}
 
Theoremcbvopabv 5130* Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 15-Oct-1996.)
((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))       {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑤⟩ ∣ 𝜓}
 
Theoremcbvopab1 5131* Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 6-Oct-2004.) (Revised by Mario Carneiro, 14-Oct-2016.) Add disjoint variable condition to avoid ax-13 2386. See cbvopab1g 5132 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 17-Jan-2024.)
𝑧𝜑    &   𝑥𝜓    &   (𝑥 = 𝑧 → (𝜑𝜓))       {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜓}
 
Theoremcbvopab1g 5132* Change first bound variable in an ordered-pair class abstraction, using explicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2386. See cbvopab1 5131 for a version with more disjoint variable conditions, but not requiring ax-13 2386. (Contributed by NM, 6-Oct-2004.) (Revised by Mario Carneiro, 14-Oct-2016.) (New usage is discouraged.)
𝑧𝜑    &   𝑥𝜓    &   (𝑥 = 𝑧 → (𝜑𝜓))       {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜓}
 
Theoremcbvopab2 5133* Change second bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 22-Aug-2013.)
𝑧𝜑    &   𝑦𝜓    &   (𝑦 = 𝑧 → (𝜑𝜓))       {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑧⟩ ∣ 𝜓}
 
Theoremcbvopab1s 5134* Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 31-Jul-2003.)
{⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ [𝑧 / 𝑥]𝜑}
 
Theoremcbvopab1v 5135* Rule used to change the first bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Eric Schmidt, 4-Apr-2007.)
(𝑥 = 𝑧 → (𝜑𝜓))       {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜓}
 
Theoremcbvopab2v 5136* Rule used to change the second bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 2-Sep-1999.)
(𝑦 = 𝑧 → (𝜑𝜓))       {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑧⟩ ∣ 𝜓}
 
Theoremunopab 5137 Union of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.)
({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}
 
2.1.25  Functions in maps-to notation
 
Syntaxcmpt 5138 Extend the definition of a class to include maps-to notation for defining a function via a rule.
class (𝑥𝐴𝐵)
 
Definitiondf-mpt 5139* Define maps-to notation for defining a function via a rule. Read as "the function which maps 𝑥 (in 𝐴) to 𝐵(𝑥)". The class expression 𝐵 is the value of the function at 𝑥 and normally contains the variable 𝑥. An example is the square function for complex numbers, (𝑥 ∈ ℂ ↦ (𝑥↑2)). Similar to the definition of mapping in [ChoquetDD] p. 2. (Contributed by NM, 17-Feb-2008.)
(𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
 
Theoremmpteq12df 5140 An equality inference for the maps-to notation. Compare mpteq12dv 5143. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 11-Dec-2016.)
𝑥𝜑    &   (𝜑𝐴 = 𝐶)    &   (𝜑𝐵 = 𝐷)       (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
 
Theoremmpteq12f 5141 An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥𝐴 𝐵 = 𝐷) → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
 
Theoremmpteq12dva 5142* An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017.)
(𝜑𝐴 = 𝐶)    &   ((𝜑𝑥𝐴) → 𝐵 = 𝐷)       (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
 
Theoremmpteq12dv 5143* An equality inference for the maps-to notation. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 16-Dec-2013.) Drop ax-10 2141 while shortening its proof. (Revised by Steven Nguyen and Gino Giotto, 1-Dec-2023.)
(𝜑𝐴 = 𝐶)    &   (𝜑𝐵 = 𝐷)       (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
 
Theoremmpteq12dvOLD 5144* Obsolete version of mpteq12dv 5143 as of 1-Dec-2023. (Contributed by NM, 24-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐴 = 𝐶)    &   (𝜑𝐵 = 𝐷)       (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
 
Theoremmpteq12 5145* An equality theorem for the maps-to notation. (Contributed by NM, 16-Dec-2013.)
((𝐴 = 𝐶 ∧ ∀𝑥𝐴 𝐵 = 𝐷) → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
 
Theoremmpteq1 5146* An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
(𝐴 = 𝐵 → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
 
Theoremmpteq1d 5147* An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 11-Jun-2016.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
 
Theoremmpteq1i 5148* An equality theorem for the maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
𝐴 = 𝐵       (𝑥𝐴𝐶) = (𝑥𝐵𝐶)
 
Theoremmpteq2ia 5149 An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
(𝑥𝐴𝐵 = 𝐶)       (𝑥𝐴𝐵) = (𝑥𝐴𝐶)
 
Theoremmpteq2i 5150 An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
𝐵 = 𝐶       (𝑥𝐴𝐵) = (𝑥𝐴𝐶)
 
Theoremmpteq12i 5151 An equality inference for the maps-to notation. (Contributed by Scott Fenton, 27-Oct-2010.) (Revised by Mario Carneiro, 16-Dec-2013.)
𝐴 = 𝐶    &   𝐵 = 𝐷       (𝑥𝐴𝐵) = (𝑥𝐶𝐷)
 
Theoremmpteq2da 5152 Slightly more general equality inference for the maps-to notation. (Contributed by FL, 14-Sep-2013.) (Revised by Mario Carneiro, 16-Dec-2013.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝐵 = 𝐶)       (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
 
Theoremmpteq2dva 5153* Slightly more general equality inference for the maps-to notation. (Contributed by Scott Fenton, 25-Apr-2012.)
((𝜑𝑥𝐴) → 𝐵 = 𝐶)       (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
 
Theoremmpteq2dv 5154* An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 23-Aug-2014.)
(𝜑𝐵 = 𝐶)       (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
 
Theoremnfmpt 5155* Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.)
𝑥𝐴    &   𝑥𝐵       𝑥(𝑦𝐴𝐵)
 
Theoremnfmpt1 5156 Bound-variable hypothesis builder for the maps-to notation. (Contributed by FL, 17-Feb-2008.)
𝑥(𝑥𝐴𝐵)
 
Theoremcbvmptf 5157* Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.) (Revised by Thierry Arnoux, 9-Mar-2017.) Add disjoint variable condition to avoid ax-13 2386. See cbvmptfg 5158 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 17-Jan-2024.)
𝑥𝐴    &   𝑦𝐴    &   𝑦𝐵    &   𝑥𝐶    &   (𝑥 = 𝑦𝐵 = 𝐶)       (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
 
Theoremcbvmptfg 5158 Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2386. See cbvmptf 5157 for a version with more disjoint variable conditions, but not requiring ax-13 2386. (Contributed by NM, 11-Sep-2011.) (Revised by Thierry Arnoux, 9-Mar-2017.) (New usage is discouraged.)
𝑥𝐴    &   𝑦𝐴    &   𝑦𝐵    &   𝑥𝐶    &   (𝑥 = 𝑦𝐵 = 𝐶)       (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
 
Theoremcbvmpt 5159* Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.) Add disjoint variable condition to avoid ax-13 2386. See cbvmptg 5160 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 17-Jan-2024.)
𝑦𝐵    &   𝑥𝐶    &   (𝑥 = 𝑦𝐵 = 𝐶)       (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
 
Theoremcbvmptg 5160* Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2386. See cbvmpt 5159 for a version with more disjoint variable conditions, but not requiring ax-13 2386. (Contributed by NM, 11-Sep-2011.) (New usage is discouraged.)
𝑦𝐵    &   𝑥𝐶    &   (𝑥 = 𝑦𝐵 = 𝐶)       (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
 
Theoremcbvmptv 5161* Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by Mario Carneiro, 19-Feb-2013.) Add disjoint variable condition to avoid ax-13 2386. See cbvmptvg 5162 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 17-Jan-2024.)
(𝑥 = 𝑦𝐵 = 𝐶)       (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
 
Theoremcbvmptvg 5162* Rule to change the bound variable in a maps-to function, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2386. See cbvmptv 5161 for a version with more disjoint variable conditions, but not requiring ax-13 2386. (Contributed by Mario Carneiro, 19-Feb-2013.) (New usage is discouraged.)
(𝑥 = 𝑦𝐵 = 𝐶)       (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
 
Theoremmptv 5163* Function with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.)
(𝑥 ∈ V ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐵}
 
2.1.26  Transitive classes
 
Syntaxwtr 5164 Extend wff notation to include transitive classes. Notation from [TakeutiZaring] p. 35.
wff Tr 𝐴
 
Definitiondf-tr 5165 Define the transitive class predicate. Not to be confused with a transitive relation (see cotr 5966). Definition of [Enderton] p. 71 extended to arbitrary classes. For alternate definitions, see dftr2 5166 (which is suggestive of the word "transitive"), dftr3 5168, dftr4 5169, dftr5 5167, and (when 𝐴 is a set) unisuc 6261. The term "complete" is used instead of "transitive" in Definition 3 of [Suppes] p. 130. (Contributed by NM, 29-Aug-1993.)
(Tr 𝐴 𝐴𝐴)
 
Theoremdftr2 5166* An alternate way of defining a transitive class. Exercise 7 of [TakeutiZaring] p. 40. (Contributed by NM, 24-Apr-1994.)
(Tr 𝐴 ↔ ∀𝑥𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
 
Theoremdftr5 5167* An alternate way of defining a transitive class. (Contributed by NM, 20-Mar-2004.)
(Tr 𝐴 ↔ ∀𝑥𝐴𝑦𝑥 𝑦𝐴)
 
Theoremdftr3 5168* An alternate way of defining a transitive class. Definition 7.1 of [TakeutiZaring] p. 35. (Contributed by NM, 29-Aug-1993.)
(Tr 𝐴 ↔ ∀𝑥𝐴 𝑥𝐴)
 
Theoremdftr4 5169 An alternate way of defining a transitive class. Definition of [Enderton] p. 71. (Contributed by NM, 29-Aug-1993.)
(Tr 𝐴𝐴 ⊆ 𝒫 𝐴)
 
Theoremtreq 5170 Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993.)
(𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵))
 
Theoremtrel 5171 In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
(Tr 𝐴 → ((𝐵𝐶𝐶𝐴) → 𝐵𝐴))
 
Theoremtrel3 5172 In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.)
(Tr 𝐴 → ((𝐵𝐶𝐶𝐷𝐷𝐴) → 𝐵𝐴))
 
Theoremtrss 5173 An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.) (Proof shortened by JJ, 26-Jul-2021.)
(Tr 𝐴 → (𝐵𝐴𝐵𝐴))
 
Theoremtrin 5174 The intersection of transitive classes is transitive. (Contributed by NM, 9-May-1994.)
((Tr 𝐴 ∧ Tr 𝐵) → Tr (𝐴𝐵))
 
Theoremtr0 5175 The empty set is transitive. (Contributed by NM, 16-Sep-1993.)
Tr ∅
 
Theoremtrv 5176 The universe is transitive. (Contributed by NM, 14-Sep-2003.)
Tr V
 
Theoremtriun 5177 An indexed union of a class of transitive sets is transitive. (Contributed by Mario Carneiro, 16-Nov-2014.)
(∀𝑥𝐴 Tr 𝐵 → Tr 𝑥𝐴 𝐵)
 
Theoremtruni 5178* The union of a class of transitive sets is transitive. Exercise 5(a) of [Enderton] p. 73. (Contributed by Scott Fenton, 21-Feb-2011.) (Proof shortened by Mario Carneiro, 26-Apr-2014.)
(∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
 
Theoremtriin 5179 An indexed intersection of a class of transitive sets is transitive. (Contributed by BJ, 3-Oct-2022.)
(∀𝑥𝐴 Tr 𝐵 → Tr 𝑥𝐴 𝐵)
 
Theoremtrint 5180* The intersection of a class of transitive sets is transitive. Exercise 5(b) of [Enderton] p. 73. (Contributed by Scott Fenton, 25-Feb-2011.) (Proof shortened by BJ, 3-Oct-2022.)
(∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
 
Theoremtrintss 5181 Any nonempty transitive class includes its intersection. Exercise 3 in [TakeutiZaring] p. 44 (which mistakenly does not include the nonemptiness hypothesis). (Contributed by Scott Fenton, 3-Mar-2011.) (Proof shortened by Andrew Salmon, 14-Nov-2011.)
((Tr 𝐴𝐴 ≠ ∅) → 𝐴𝐴)
 
2.2  ZF Set Theory - add the Axiom of Replacement
 
2.2.1  Introduce the Axiom of Replacement
 
Axiomax-rep 5182* Axiom of Replacement. An axiom scheme of Zermelo-Fraenkel set theory. Axiom 5 of [TakeutiZaring] p. 19. It tells us that the image of any set under a function is also a set (see the variant funimaex 6435). Although 𝜑 may be any wff whatsoever, this axiom is useful (i.e. its antecedent is satisfied) when we are given some function and 𝜑 encodes the predicate "the value of the function at 𝑤 is 𝑧". Thus, 𝜑 will ordinarily have free variables 𝑤 and 𝑧- think of it informally as 𝜑(𝑤, 𝑧). We prefix 𝜑 with the quantifier 𝑦 in order to "protect" the axiom from any 𝜑 containing 𝑦, thus allowing us to eliminate any restrictions on 𝜑. Another common variant is derived as axrep5 5188, where you can find some further remarks. A slightly more compact version is shown as axrep2 5185. A quite different variant is zfrep6 7650, which if used in place of ax-rep 5182 would also require that the Separation Scheme axsep 5194 be stated as a separate axiom.

There is a very strong generalization of Replacement that doesn't demand function-like behavior of 𝜑. Two versions of this generalization are called the Collection Principle cp 9314 and the Boundedness Axiom bnd 9315.

Many developments of set theory distinguish the uses of Replacement from uses of the weaker axioms of Separation axsep 5194, Null Set axnul 5201, and Pairing axpr 5320, all of which we derive from Replacement. In order to make it easier to identify the uses of those redundant axioms, we restate them as axioms ax-sep 5195, ax-nul 5202, and ax-pr 5321 below the theorems that prove them. (Contributed by NM, 23-Dec-1993.)

(∀𝑤𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)))
 
Theoremaxrep1 5183* The version of the Axiom of Replacement used in the Metamath Solitaire applet https://us.metamath.org/mmsolitaire/mms.html. Equivalence is shown via the path ax-rep 5182 axrep1 5183 axrep2 5185 axrepnd 10010 zfcndrep 10030 = ax-rep 5182. (Contributed by NM, 19-Nov-2005.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) Remove dependency on ax-13 2386. (Revised by BJ, 31-May-2019.)
𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑦𝜑)))
 
Theoremaxreplem 5184* Lemma for axrep2 5185 and axrep3 5186. (Contributed by BJ, 6-Aug-2022.)
(𝑥 = 𝑦 → (∃𝑢(𝜑 → ∀𝑣(𝜓 ↔ ∃𝑤(𝑧𝑥𝜒))) ↔ ∃𝑢(𝜑 → ∀𝑣(𝜓 ↔ ∃𝑤(𝑧𝑦𝜒)))))
 
Theoremaxrep2 5185* Axiom of Replacement expressed with the fewest number of different variables and without any restrictions on 𝜑. (Contributed by NM, 15-Aug-2003.) Remove dependency on ax-13 2386. (Revised by BJ, 31-May-2019.)
𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑦 ∧ ∀𝑦𝜑)))
 
Theoremaxrep3 5186* Axiom of Replacement slightly strengthened from axrep2 5185; 𝑤 may occur free in 𝜑. (Contributed by NM, 2-Jan-1997.) Remove dependency on ax-13 2386. (Revised by BJ, 31-May-2019.)
𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑦𝜑)))
 
Theoremaxrep4 5187* A more traditional version of the Axiom of Replacement. (Contributed by NM, 14-Aug-1994.)
𝑧𝜑       (∀𝑥𝑧𝑦(𝜑𝑦 = 𝑧) → ∃𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤𝜑)))
 
Theoremaxrep5 5188* Axiom of Replacement (similar to Axiom Rep of [BellMachover] p. 463). The antecedent tells us 𝜑 is analogous to a "function" from 𝑥 to 𝑦 (although it is not really a function since it is a wff and not a class). In the consequent we postulate the existence of a set 𝑧 that corresponds to the "image" of 𝜑 restricted to some other set 𝑤. The hypothesis says 𝑧 must not be free in 𝜑. (Contributed by NM, 26-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
𝑧𝜑       (∀𝑥(𝑥𝑤 → ∃𝑧𝑦(𝜑𝑦 = 𝑧)) → ∃𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤𝜑)))
 
Theoremaxrep6 5189* A condensed form of ax-rep 5182. (Contributed by SN, 18-Sep-2023.)
(∀𝑤∃*𝑧𝜑 → ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤𝑥 𝜑))
 
Theoremzfrepclf 5190* An inference based on the Axiom of Replacement. Typically, 𝜑 defines a function from 𝑥 to 𝑦. (Contributed by NM, 26-Nov-1995.)
𝑥𝐴    &   𝐴 ∈ V    &   (𝑥𝐴 → ∃𝑧𝑦(𝜑𝑦 = 𝑧))       𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝐴𝜑))
 
Theoremzfrep3cl 5191* An inference based on the Axiom of Replacement. Typically, 𝜑 defines a function from 𝑥 to 𝑦. (Contributed by NM, 26-Nov-1995.)
𝐴 ∈ V    &   (𝑥𝐴 → ∃𝑧𝑦(𝜑𝑦 = 𝑧))       𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝐴𝜑))
 
Theoremzfrep4 5192* A version of Replacement using class abstractions. (Contributed by NM, 26-Nov-1995.)
{𝑥𝜑} ∈ V    &   (𝜑 → ∃𝑧𝑦(𝜓𝑦 = 𝑧))       {𝑦 ∣ ∃𝑥(𝜑𝜓)} ∈ V
 
2.2.2  Derive the Axiom of Separation
 
Theoremaxsepgfromrep 5193* A more general version axsepg 5196 of the axiom scheme of separation ax-sep 5195 derived from the axiom scheme of replacement ax-rep 5182 (and first-order logic). The extra generality consists in the absence of a disjoint variable condition on 𝑧, 𝜑 (that is, variable 𝑧 may occur in formula 𝜑). See linked statements for more information. (Contributed by NM, 11-Sep-2006.) Remove dependencies on ax-9 2120 to ax-13 2386. (Revised by SN, 25-Sep-2023.) Use ax-sep 5195 instead (or axsepg 5196 if the extra generality is needed). (New usage is discouraged.)
𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))
 
Theoremaxsep 5194* Axiom scheme of separation ax-sep 5195 derived from the axiom scheme of replacement ax-rep 5182. The statement is identical to that of ax-sep 5195, and therefore shows that ax-sep 5195 is redundant when ax-rep 5182 is allowed. See ax-sep 5195 for more information. (Contributed by NM, 11-Sep-2006.) Use ax-sep 5195 instead. (New usage is discouraged.)
𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))
 
Axiomax-sep 5195* Axiom scheme of separation. This is an axiom scheme of Zermelo and Zermelo-Fraenkel set theories.

It was derived as axsep 5194 above and is therefore redundant in ZF set theory, which contains ax-rep 5182 as an axiom (contrary to Zermelo set theory). We state it as a separate axiom here so that some of its uses can be identified more easily. Some textbooks present the axiom scheme of separation as a separate axiom scheme in order to show that much of set theory can be derived without the stronger axiom scheme of replacement (which is not part of Zermelo set theory).

The axiom scheme of separation is a weak form of Frege's axiom scheme of (unrestricted) comprehension, in that it conditions it with the condition 𝑥𝑧, so that it asserts the existence of a collection only if it is smaller than some other collection 𝑧 that already exists. This prevents Russell's paradox ru 3770. In some texts, this scheme is called "Aussonderung" (German for "separation") or "Subset Axiom".

The variable 𝑥 can occur in the formula 𝜑, which in textbooks is often written 𝜑(𝑥). To specify this in the Metamath language, we omit the distinct variable condition ($d) that 𝑥 not occur in 𝜑.

For a version using a class variable, see zfauscl 5197, which requires the axiom of extensionality as well as the axiom scheme of separation for its derivation.

If we omit the requirement that 𝑦 not occur in 𝜑, we can derive a contradiction, as notzfaus 5254 shows (showing the necessity of that condition in zfauscl 5197).

Scheme Sep of [BellMachover] p. 463. (Contributed by NM, 11-Sep-2006.)

𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))
 
Theoremaxsepg 5196* A more general version of the axiom scheme of separation ax-sep 5195, where variable 𝑧 can also occur (in addition to 𝑥) in formula 𝜑, which can therefore be thought of as 𝜑(𝑥, 𝑧). This version is derived from the more restrictive ax-sep 5195 with no additional set theory axioms. Note that it was also derived from ax-rep 5182 but without ax-sep 5195 as axsepgfromrep 5193. (Contributed by NM, 10-Dec-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) Remove dependency on ax-12 2173 and ax-13 2386 and shorten proof. (Revised by BJ, 6-Oct-2019.)
𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))
 
Theoremzfauscl 5197* Separation Scheme (Aussonderung) using a class variable. To derive this from ax-sep 5195, we invoke the Axiom of Extensionality (indirectly via vtocl 3559), which is needed for the justification of class variable notation.

If we omit the requirement that 𝑦 not occur in 𝜑, we can derive a contradiction, as notzfaus 5254 shows. (Contributed by NM, 21-Jun-1993.)

𝐴 ∈ V       𝑦𝑥(𝑥𝑦 ↔ (𝑥𝐴𝜑))
 
Theorembm1.3ii 5198* Convert implication to equivalence using the Separation Scheme (Aussonderung) ax-sep 5195. Similar to Theorem 1.3(ii) of [BellMachover] p. 463. (Contributed by NM, 21-Jun-1993.)
𝑥𝑦(𝜑𝑦𝑥)       𝑥𝑦(𝑦𝑥𝜑)
 
Theoremax6vsep 5199* Derive ax6v 1967 (a weakened version of ax-6 1966 where 𝑥 and 𝑦 must be distinct), from Separation ax-sep 5195 and Extensionality ax-ext 2793. See ax6 2398 for the derivation of ax-6 1966 from ax6v 1967. (Contributed by NM, 12-Nov-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
¬ ∀𝑥 ¬ 𝑥 = 𝑦
 
2.2.3  Derive the Null Set Axiom
 
TheoremaxnulALT 5200* Alternate proof of axnul 5201, proved from propositional calculus, ax-gen 1792, ax-4 1806, sp 2178, and ax-rep 5182. To check this, replace sp 2178 with the obsolete axiom ax-c5 36013 in the proof of axnulALT 5200 and type the Metamath program "MM> SHOW TRACE_BACK axnulALT / AXIOMS" command. (Contributed by Jeff Hoffman, 3-Feb-2008.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑥𝑦 ¬ 𝑦𝑥
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900
  Copyright terms: Public domain < Previous  Next >