| Metamath
Proof Explorer Theorem List (p. 52 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | disjiund 5101* | Conditions for a collection of index unions of sets 𝐴(𝑎, 𝑏) for 𝑎 ∈ 𝑉 and 𝑏 ∈ 𝑊 to be disjoint. (Contributed by AV, 9-Jan-2022.) |
| ⊢ (𝑎 = 𝑐 → 𝐴 = 𝐶) & ⊢ (𝑏 = 𝑑 → 𝐶 = 𝐷) & ⊢ (𝑎 = 𝑐 → 𝑊 = 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐷) → 𝑎 = 𝑐) ⇒ ⊢ (𝜑 → Disj 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ 𝑊 𝐴) | ||
| Theorem | sndisj 5102 | Any collection of singletons is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| ⊢ Disj 𝑥 ∈ 𝐴 {𝑥} | ||
| Theorem | 0disj 5103 | Any collection of empty sets is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| ⊢ Disj 𝑥 ∈ 𝐴 ∅ | ||
| Theorem | disjxsn 5104* | A singleton collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| ⊢ Disj 𝑥 ∈ {𝐴}𝐵 | ||
| Theorem | disjx0 5105 | An empty collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| ⊢ Disj 𝑥 ∈ ∅ 𝐵 | ||
| Theorem | disjprg 5106* | A pair collection is disjoint iff the two sets in the family have empty intersection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) & ⊢ (𝑥 = 𝐵 → 𝐶 = 𝐸) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) → (Disj 𝑥 ∈ {𝐴, 𝐵}𝐶 ↔ (𝐷 ∩ 𝐸) = ∅)) | ||
| Theorem | disjxiun 5107* | An indexed union of a disjoint collection of disjoint collections is disjoint if each component is disjoint, and the disjoint unions in the collection are also disjoint. Note that 𝐵(𝑦) and 𝐶(𝑥) may have the displayed free variables. (Contributed by Mario Carneiro, 14-Nov-2016.) (Proof shortened by JJ, 27-May-2021.) |
| ⊢ (Disj 𝑦 ∈ 𝐴 𝐵 → (Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵𝐶 ↔ (∀𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶))) | ||
| Theorem | disjxun 5108* | The union of two disjoint collections. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) ⇒ ⊢ ((𝐴 ∩ 𝐵) = ∅ → (Disj 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 ↔ (Disj 𝑥 ∈ 𝐴 𝐶 ∧ Disj 𝑥 ∈ 𝐵 𝐶 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∩ 𝐷) = ∅))) | ||
| Theorem | disjss3 5109* | Expand a disjoint collection with any number of empty sets. (Contributed by Mario Carneiro, 15-Nov-2016.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ ∀𝑥 ∈ (𝐵 ∖ 𝐴)𝐶 = ∅) → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶)) | ||
| Syntax | wbr 5110 | Extend wff notation to include the general binary relation predicate. Note that the syntax is simply three class symbols in a row. Since binary relations are the only possible wff expressions consisting of three class expressions in a row, the syntax is unambiguous. (For an example of how syntax could become ambiguous if we are not careful, see the comment in cneg 11413.) |
| wff 𝐴𝑅𝐵 | ||
| Definition | df-br 5111 | Define a general binary relation. Note that the syntax is simply three class symbols in a row. Definition 6.18 of [TakeutiZaring] p. 29 generalized to arbitrary classes. Class 𝑅 often denotes a relation such as "< " that compares two classes 𝐴 and 𝐵, which might be numbers such as 1 and 2 (see df-ltxr 11220 for the specific definition of <). As a wff, relations are true or false. For example, (𝑅 = {〈2, 6〉, 〈3, 9〉} → 3𝑅9) (ex-br 30367). Often class 𝑅 meets the Rel criteria to be defined in df-rel 5648, and in particular 𝑅 may be a function (see df-fun 6516). This definition of relations is well-defined, although not very meaningful, when classes 𝐴 and/or 𝐵 are proper classes (i.e., are not sets). On the other hand, we often find uses for this definition when 𝑅 is a proper class (see for example iprc 7890). (Contributed by NM, 31-Dec-1993.) |
| ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | ||
| Theorem | breq 5112 | Equality theorem for binary relations. (Contributed by NM, 4-Jun-1995.) |
| ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) | ||
| Theorem | breq1 5113 | Equality theorem for a binary relation. (Contributed by NM, 31-Dec-1993.) |
| ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | ||
| Theorem | breq2 5114 | Equality theorem for a binary relation. (Contributed by NM, 31-Dec-1993.) |
| ⊢ (𝐴 = 𝐵 → (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵)) | ||
| Theorem | breq12 5115 | Equality theorem for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | ||
| Theorem | breqi 5116 | Equality inference for binary relations. (Contributed by NM, 19-Feb-2005.) |
| ⊢ 𝑅 = 𝑆 ⇒ ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵) | ||
| Theorem | breq1i 5117 | Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶) | ||
| Theorem | breq2i 5118 | Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵) | ||
| Theorem | breq12i 5119 | Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
| ⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷) | ||
| Theorem | breq1d 5120 | Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | ||
| Theorem | breqd 5121 | Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) | ||
| Theorem | breq2d 5122 | Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵)) | ||
| Theorem | breq12d 5123 | Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | ||
| Theorem | breq123d 5124 | Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝑅 = 𝑆) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑆𝐷)) | ||
| Theorem | breqdi 5125 | Equality deduction for a binary relation. (Contributed by Thierry Arnoux, 5-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶𝐴𝐷) ⇒ ⊢ (𝜑 → 𝐶𝐵𝐷) | ||
| Theorem | breqan12d 5126 | Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜓 → 𝐶 = 𝐷) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | ||
| Theorem | breqan12rd 5127 | Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜓 → 𝐶 = 𝐷) ⇒ ⊢ ((𝜓 ∧ 𝜑) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | ||
| Theorem | eqnbrtrd 5128 | Substitution of equal classes into the negation of a binary relation. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → ¬ 𝐵𝑅𝐶) ⇒ ⊢ (𝜑 → ¬ 𝐴𝑅𝐶) | ||
| Theorem | nbrne1 5129 | Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.) |
| ⊢ ((𝐴𝑅𝐵 ∧ ¬ 𝐴𝑅𝐶) → 𝐵 ≠ 𝐶) | ||
| Theorem | nbrne2 5130 | Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.) |
| ⊢ ((𝐴𝑅𝐶 ∧ ¬ 𝐵𝑅𝐶) → 𝐴 ≠ 𝐵) | ||
| Theorem | eqbrtri 5131 | Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
| ⊢ 𝐴 = 𝐵 & ⊢ 𝐵𝑅𝐶 ⇒ ⊢ 𝐴𝑅𝐶 | ||
| Theorem | eqbrtrd 5132 | Substitution of equal classes into a binary relation. (Contributed by NM, 8-Oct-1999.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐵𝑅𝐶) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | eqbrtrri 5133 | Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
| ⊢ 𝐴 = 𝐵 & ⊢ 𝐴𝑅𝐶 ⇒ ⊢ 𝐵𝑅𝐶 | ||
| Theorem | eqbrtrrd 5134 | Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐴𝑅𝐶) ⇒ ⊢ (𝜑 → 𝐵𝑅𝐶) | ||
| Theorem | breqtri 5135 | Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
| ⊢ 𝐴𝑅𝐵 & ⊢ 𝐵 = 𝐶 ⇒ ⊢ 𝐴𝑅𝐶 | ||
| Theorem | breqtrd 5136 | Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999.) |
| ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | breqtrri 5137 | Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
| ⊢ 𝐴𝑅𝐵 & ⊢ 𝐶 = 𝐵 ⇒ ⊢ 𝐴𝑅𝐶 | ||
| Theorem | breqtrrd 5138 | Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999.) |
| ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝐶 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | 3brtr3i 5139 | Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.) |
| ⊢ 𝐴𝑅𝐵 & ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ 𝐶𝑅𝐷 | ||
| Theorem | 3brtr4i 5140 | Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.) |
| ⊢ 𝐴𝑅𝐵 & ⊢ 𝐶 = 𝐴 & ⊢ 𝐷 = 𝐵 ⇒ ⊢ 𝐶𝑅𝐷 | ||
| Theorem | 3brtr3d 5141 | Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.) |
| ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → 𝐶𝑅𝐷) | ||
| Theorem | 3brtr4d 5142 | Substitution of equality into both sides of a binary relation. (Contributed by NM, 21-Feb-2005.) |
| ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝐶 = 𝐴) & ⊢ (𝜑 → 𝐷 = 𝐵) ⇒ ⊢ (𝜑 → 𝐶𝑅𝐷) | ||
| Theorem | 3brtr3g 5143 | Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.) |
| ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ (𝜑 → 𝐶𝑅𝐷) | ||
| Theorem | 3brtr4g 5144 | Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.) |
| ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ 𝐶 = 𝐴 & ⊢ 𝐷 = 𝐵 ⇒ ⊢ (𝜑 → 𝐶𝑅𝐷) | ||
| Theorem | eqbrtrid 5145 | A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
| ⊢ 𝐴 = 𝐵 & ⊢ (𝜑 → 𝐵𝑅𝐶) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | eqbrtrrid 5146 | A chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004.) |
| ⊢ 𝐵 = 𝐴 & ⊢ (𝜑 → 𝐵𝑅𝐶) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | breqtrid 5147 | A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
| ⊢ 𝐴𝑅𝐵 & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | breqtrrid 5148 | A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.) |
| ⊢ 𝐴𝑅𝐵 & ⊢ (𝜑 → 𝐶 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | eqbrtrdi 5149 | A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ 𝐵𝑅𝐶 ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | eqbrtrrdi 5150 | A chained equality inference for a binary relation. (Contributed by NM, 4-Jan-2006.) |
| ⊢ (𝜑 → 𝐵 = 𝐴) & ⊢ 𝐵𝑅𝐶 ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | breqtrdi 5151 | A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
| ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ 𝐵 = 𝐶 ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | breqtrrdi 5152 | A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.) |
| ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ 𝐶 = 𝐵 ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | ssbrd 5153 | Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) | ||
| Theorem | ssbr 5154 | Implication from a subclass relationship of binary relations. (Contributed by Peter Mazsa, 11-Nov-2019.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) | ||
| Theorem | ssbri 5155 | Inference from a subclass relationship of binary relations. (Contributed by NM, 28-Mar-2007.) (Revised by Mario Carneiro, 8-Feb-2015.) |
| ⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) | ||
| Theorem | nfbrd 5156 | Deduction version of bound-variable hypothesis builder nfbr 5157. (Contributed by NM, 13-Dec-2005.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝑅) & ⊢ (𝜑 → Ⅎ𝑥𝐵) ⇒ ⊢ (𝜑 → Ⅎ𝑥 𝐴𝑅𝐵) | ||
| Theorem | nfbr 5157 | Bound-variable hypothesis builder for binary relation. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥 𝐴𝑅𝐵 | ||
| Theorem | brab1 5158* | Relationship between a binary relation and a class abstraction. (Contributed by Andrew Salmon, 8-Jul-2011.) |
| ⊢ (𝑥𝑅𝐴 ↔ 𝑥 ∈ {𝑧 ∣ 𝑧𝑅𝐴}) | ||
| Theorem | br0 5159 | The empty binary relation never holds. (Contributed by NM, 23-Aug-2018.) |
| ⊢ ¬ 𝐴∅𝐵 | ||
| Theorem | brne0 5160 | If two sets are in a binary relation, the relation cannot be empty. (Contributed by Alexander van der Vekens, 7-Jul-2018.) |
| ⊢ (𝐴𝑅𝐵 → 𝑅 ≠ ∅) | ||
| Theorem | brun 5161 | The union of two binary relations. (Contributed by NM, 21-Dec-2008.) |
| ⊢ (𝐴(𝑅 ∪ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∨ 𝐴𝑆𝐵)) | ||
| Theorem | brin 5162 | The intersection of two relations. (Contributed by FL, 7-Oct-2008.) |
| ⊢ (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ 𝐴𝑆𝐵)) | ||
| Theorem | brdif 5163 | The difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2011.) |
| ⊢ (𝐴(𝑅 ∖ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ ¬ 𝐴𝑆𝐵)) | ||
| Theorem | sbcbr123 5164 | Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) (Revised by NM, 22-Aug-2018.) |
| ⊢ ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝑅⦋𝐴 / 𝑥⦌𝐶) | ||
| Theorem | sbcbr 5165* | Move substitution in and out of a binary relation. (Contributed by NM, 23-Aug-2018.) |
| ⊢ ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ 𝐵⦋𝐴 / 𝑥⦌𝑅𝐶) | ||
| Theorem | sbcbr12g 5166* | Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵𝑅⦋𝐴 / 𝑥⦌𝐶)) | ||
| Theorem | sbcbr1g 5167* | Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵𝑅𝐶)) | ||
| Theorem | sbcbr2g 5168* | Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ 𝐵𝑅⦋𝐴 / 𝑥⦌𝐶)) | ||
| Theorem | brsymdif 5169 | Characterization of the symmetric difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2012.) |
| ⊢ (𝐴(𝑅 △ 𝑆)𝐵 ↔ ¬ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) | ||
| Theorem | brralrspcev 5170* | Restricted existential specialization with a restricted universal quantifier over a relation, closed form. (Contributed by AV, 20-Aug-2022.) |
| ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) | ||
| Theorem | brimralrspcev 5171* | Restricted existential specialization with a restricted universal quantifier over an implication with a relation in the antecedent, closed form. (Contributed by AV, 20-Aug-2022.) |
| ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 ((𝜑 ∧ 𝐴𝑅𝐵) → 𝜓)) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝜑 ∧ 𝐴𝑅𝑥) → 𝜓)) | ||
| Syntax | copab 5172 | Extend class notation to include ordered-pair class abstraction (class builder). |
| class {〈𝑥, 𝑦〉 ∣ 𝜑} | ||
| Definition | df-opab 5173* | Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually 𝑥 and 𝑦 are distinct, although the definition does not require it (see dfid2 5538 for a case where they are not distinct). The brace notation is called "class abstraction" by Quine; it is also called "class builder" in the literature. An alternate definition using no existential quantifiers is shown by dfopab2 8034. An example is given by ex-opab 30368. (Contributed by NM, 4-Jul-1994.) |
| ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | ||
| Theorem | opabss 5174* | The collection of ordered pairs in a class is a subclass of it. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} ⊆ 𝑅 | ||
| Theorem | opabbid 5175 | Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) | ||
| Theorem | opabbidv 5176* | Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) | ||
| Theorem | opabbii 5177 | Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.) |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} | ||
| Theorem | nfopabd 5178* | Bound-variable hypothesis builder for class abstraction. Deduction form. (Contributed by Scott Fenton, 26-Oct-2024.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑧𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑧{〈𝑥, 𝑦〉 ∣ 𝜓}) | ||
| Theorem | nfopab 5179* | Bound-variable hypothesis builder for class abstraction. (Contributed by NM, 1-Sep-1999.) Remove disjoint variable conditions. (Revised by Andrew Salmon, 11-Jul-2011.) (Revised by Scott Fenton, 26-Oct-2024.) |
| ⊢ Ⅎ𝑧𝜑 ⇒ ⊢ Ⅎ𝑧{〈𝑥, 𝑦〉 ∣ 𝜑} | ||
| Theorem | nfopab1 5180 | The first abstraction variable in an ordered-pair class abstraction is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} | ||
| Theorem | nfopab2 5181 | The second abstraction variable in an ordered-pair class abstraction is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} | ||
| Theorem | cbvopab 5182* | Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 14-Sep-2003.) |
| ⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑤𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜓 & ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑤〉 ∣ 𝜓} | ||
| Theorem | cbvopabv 5183* | Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 15-Oct-1996.) Reduce axiom usage. (Revised by GG, 15-Oct-2024.) |
| ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑤〉 ∣ 𝜓} | ||
| Theorem | cbvopab1 5184* | Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 6-Oct-2004.) (Revised by Mario Carneiro, 14-Oct-2016.) Add disjoint variable condition to avoid ax-13 2371. See cbvopab1g 5185 for a less restrictive version requiring more axioms. (Revised by GG, 17-Jan-2024.) |
| ⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ 𝜓} | ||
| Theorem | cbvopab1g 5185* | Change first bound variable in an ordered-pair class abstraction, using explicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2371. See cbvopab1 5184 for a version with more disjoint variable conditions, but not requiring ax-13 2371. (Contributed by NM, 6-Oct-2004.) (Revised by Mario Carneiro, 14-Oct-2016.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ 𝜓} | ||
| Theorem | cbvopab2 5186* | Change second bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 22-Aug-2013.) |
| ⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑦𝜓 & ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑧〉 ∣ 𝜓} | ||
| Theorem | cbvopab1s 5187* | Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 31-Jul-2003.) |
| ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ [𝑧 / 𝑥]𝜑} | ||
| Theorem | cbvopab1v 5188* | Rule used to change the first bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) Reduce axiom usage. (Revised by GG, 17-Nov-2024.) |
| ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ 𝜓} | ||
| Theorem | cbvopab2v 5189* | Rule used to change the second bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 2-Sep-1999.) |
| ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑧〉 ∣ 𝜓} | ||
| Theorem | unopab 5190 | Union of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.) |
| ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∪ {〈𝑥, 𝑦〉 ∣ 𝜓}) = {〈𝑥, 𝑦〉 ∣ (𝜑 ∨ 𝜓)} | ||
| Syntax | cmpt 5191 | Extend the definition of a class to include maps-to notation for defining a function via a rule. |
| class (𝑥 ∈ 𝐴 ↦ 𝐵) | ||
| Definition | df-mpt 5192* | Define maps-to notation for defining a function via a rule. Read as "the function which maps 𝑥 (in 𝐴) to 𝐵(𝑥)". The class expression 𝐵 is the value of the function at 𝑥 and normally contains the variable 𝑥. An example is the square function for complex numbers, (𝑥 ∈ ℂ ↦ (𝑥↑2)). Similar to the definition of mapping in [ChoquetDD] p. 2. (Contributed by NM, 17-Feb-2008.) |
| ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | ||
| Theorem | mpteq12da 5193 | An equality inference for the maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) Remove dependency on ax-10 2142. (Revised by SN, 11-Nov-2024.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | ||
| Theorem | mpteq12df 5194 | An equality inference for the maps-to notation. Compare mpteq12dv 5197. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 11-Dec-2016.) (Proof shortened by SN, 11-Nov-2024.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | ||
| Theorem | mpteq12f 5195 | An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
| ⊢ ((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | ||
| Theorem | mpteq12dva 5196* | An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017.) Remove dependency on ax-10 2142, ax-12 2178. (Revised by SN, 11-Nov-2024.) |
| ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | ||
| Theorem | mpteq12dv 5197* | An equality inference for the maps-to notation. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 16-Dec-2013.) Remove dependency on ax-10 2142, ax-12 2178. (Revised by SN and GG, 1-Dec-2023.) |
| ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | ||
| Theorem | mpteq12 5198* | An equality theorem for the maps-to notation. (Contributed by NM, 16-Dec-2013.) |
| ⊢ ((𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | ||
| Theorem | mpteq1 5199* | An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) (Proof shortened by SN, 11-Nov-2024.) |
| ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
| Theorem | mpteq1d 5200* | An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 11-Jun-2016.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |