| Metamath
Proof Explorer Theorem List (p. 52 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | disjxsn 5101* | A singleton collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| ⊢ Disj 𝑥 ∈ {𝐴}𝐵 | ||
| Theorem | disjx0 5102 | An empty collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| ⊢ Disj 𝑥 ∈ ∅ 𝐵 | ||
| Theorem | disjprg 5103* | A pair collection is disjoint iff the two sets in the family have empty intersection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) & ⊢ (𝑥 = 𝐵 → 𝐶 = 𝐸) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) → (Disj 𝑥 ∈ {𝐴, 𝐵}𝐶 ↔ (𝐷 ∩ 𝐸) = ∅)) | ||
| Theorem | disjxiun 5104* | An indexed union of a disjoint collection of disjoint collections is disjoint if each component is disjoint, and the disjoint unions in the collection are also disjoint. Note that 𝐵(𝑦) and 𝐶(𝑥) may have the displayed free variables. (Contributed by Mario Carneiro, 14-Nov-2016.) (Proof shortened by JJ, 27-May-2021.) |
| ⊢ (Disj 𝑦 ∈ 𝐴 𝐵 → (Disj 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵𝐶 ↔ (∀𝑦 ∈ 𝐴 Disj 𝑥 ∈ 𝐵 𝐶 ∧ Disj 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶))) | ||
| Theorem | disjxun 5105* | The union of two disjoint collections. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) ⇒ ⊢ ((𝐴 ∩ 𝐵) = ∅ → (Disj 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 ↔ (Disj 𝑥 ∈ 𝐴 𝐶 ∧ Disj 𝑥 ∈ 𝐵 𝐶 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∩ 𝐷) = ∅))) | ||
| Theorem | disjss3 5106* | Expand a disjoint collection with any number of empty sets. (Contributed by Mario Carneiro, 15-Nov-2016.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ ∀𝑥 ∈ (𝐵 ∖ 𝐴)𝐶 = ∅) → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶)) | ||
| Syntax | wbr 5107 | Extend wff notation to include the general binary relation predicate. Note that the syntax is simply three class symbols in a row. Since binary relations are the only possible wff expressions consisting of three class expressions in a row, the syntax is unambiguous. (For an example of how syntax could become ambiguous if we are not careful, see the comment in cneg 11406.) |
| wff 𝐴𝑅𝐵 | ||
| Definition | df-br 5108 | Define a general binary relation. Note that the syntax is simply three class symbols in a row. Definition 6.18 of [TakeutiZaring] p. 29 generalized to arbitrary classes. Class 𝑅 often denotes a relation such as "< " that compares two classes 𝐴 and 𝐵, which might be numbers such as 1 and 2 (see df-ltxr 11213 for the specific definition of <). As a wff, relations are true or false. For example, (𝑅 = {〈2, 6〉, 〈3, 9〉} → 3𝑅9) (ex-br 30360). Often class 𝑅 meets the Rel criteria to be defined in df-rel 5645, and in particular 𝑅 may be a function (see df-fun 6513). This definition of relations is well-defined, although not very meaningful, when classes 𝐴 and/or 𝐵 are proper classes (i.e., are not sets). On the other hand, we often find uses for this definition when 𝑅 is a proper class (see for example iprc 7887). (Contributed by NM, 31-Dec-1993.) |
| ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | ||
| Theorem | breq 5109 | Equality theorem for binary relations. (Contributed by NM, 4-Jun-1995.) |
| ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) | ||
| Theorem | breq1 5110 | Equality theorem for a binary relation. (Contributed by NM, 31-Dec-1993.) |
| ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | ||
| Theorem | breq2 5111 | Equality theorem for a binary relation. (Contributed by NM, 31-Dec-1993.) |
| ⊢ (𝐴 = 𝐵 → (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵)) | ||
| Theorem | breq12 5112 | Equality theorem for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | ||
| Theorem | breqi 5113 | Equality inference for binary relations. (Contributed by NM, 19-Feb-2005.) |
| ⊢ 𝑅 = 𝑆 ⇒ ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵) | ||
| Theorem | breq1i 5114 | Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶) | ||
| Theorem | breq2i 5115 | Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵) | ||
| Theorem | breq12i 5116 | Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
| ⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷) | ||
| Theorem | breq1d 5117 | Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | ||
| Theorem | breqd 5118 | Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) | ||
| Theorem | breq2d 5119 | Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶𝑅𝐴 ↔ 𝐶𝑅𝐵)) | ||
| Theorem | breq12d 5120 | Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | ||
| Theorem | breq123d 5121 | Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝑅 = 𝑆) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑆𝐷)) | ||
| Theorem | breqdi 5122 | Equality deduction for a binary relation. (Contributed by Thierry Arnoux, 5-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶𝐴𝐷) ⇒ ⊢ (𝜑 → 𝐶𝐵𝐷) | ||
| Theorem | breqan12d 5123 | Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜓 → 𝐶 = 𝐷) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | ||
| Theorem | breqan12rd 5124 | Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜓 → 𝐶 = 𝐷) ⇒ ⊢ ((𝜓 ∧ 𝜑) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | ||
| Theorem | eqnbrtrd 5125 | Substitution of equal classes into the negation of a binary relation. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → ¬ 𝐵𝑅𝐶) ⇒ ⊢ (𝜑 → ¬ 𝐴𝑅𝐶) | ||
| Theorem | nbrne1 5126 | Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.) |
| ⊢ ((𝐴𝑅𝐵 ∧ ¬ 𝐴𝑅𝐶) → 𝐵 ≠ 𝐶) | ||
| Theorem | nbrne2 5127 | Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.) |
| ⊢ ((𝐴𝑅𝐶 ∧ ¬ 𝐵𝑅𝐶) → 𝐴 ≠ 𝐵) | ||
| Theorem | eqbrtri 5128 | Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
| ⊢ 𝐴 = 𝐵 & ⊢ 𝐵𝑅𝐶 ⇒ ⊢ 𝐴𝑅𝐶 | ||
| Theorem | eqbrtrd 5129 | Substitution of equal classes into a binary relation. (Contributed by NM, 8-Oct-1999.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐵𝑅𝐶) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | eqbrtrri 5130 | Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
| ⊢ 𝐴 = 𝐵 & ⊢ 𝐴𝑅𝐶 ⇒ ⊢ 𝐵𝑅𝐶 | ||
| Theorem | eqbrtrrd 5131 | Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐴𝑅𝐶) ⇒ ⊢ (𝜑 → 𝐵𝑅𝐶) | ||
| Theorem | breqtri 5132 | Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
| ⊢ 𝐴𝑅𝐵 & ⊢ 𝐵 = 𝐶 ⇒ ⊢ 𝐴𝑅𝐶 | ||
| Theorem | breqtrd 5133 | Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999.) |
| ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | breqtrri 5134 | Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
| ⊢ 𝐴𝑅𝐵 & ⊢ 𝐶 = 𝐵 ⇒ ⊢ 𝐴𝑅𝐶 | ||
| Theorem | breqtrrd 5135 | Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999.) |
| ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝐶 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | 3brtr3i 5136 | Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.) |
| ⊢ 𝐴𝑅𝐵 & ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ 𝐶𝑅𝐷 | ||
| Theorem | 3brtr4i 5137 | Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.) |
| ⊢ 𝐴𝑅𝐵 & ⊢ 𝐶 = 𝐴 & ⊢ 𝐷 = 𝐵 ⇒ ⊢ 𝐶𝑅𝐷 | ||
| Theorem | 3brtr3d 5138 | Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.) |
| ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → 𝐶𝑅𝐷) | ||
| Theorem | 3brtr4d 5139 | Substitution of equality into both sides of a binary relation. (Contributed by NM, 21-Feb-2005.) |
| ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝐶 = 𝐴) & ⊢ (𝜑 → 𝐷 = 𝐵) ⇒ ⊢ (𝜑 → 𝐶𝑅𝐷) | ||
| Theorem | 3brtr3g 5140 | Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.) |
| ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ (𝜑 → 𝐶𝑅𝐷) | ||
| Theorem | 3brtr4g 5141 | Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.) |
| ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ 𝐶 = 𝐴 & ⊢ 𝐷 = 𝐵 ⇒ ⊢ (𝜑 → 𝐶𝑅𝐷) | ||
| Theorem | eqbrtrid 5142 | A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
| ⊢ 𝐴 = 𝐵 & ⊢ (𝜑 → 𝐵𝑅𝐶) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | eqbrtrrid 5143 | A chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004.) |
| ⊢ 𝐵 = 𝐴 & ⊢ (𝜑 → 𝐵𝑅𝐶) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | breqtrid 5144 | A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
| ⊢ 𝐴𝑅𝐵 & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | breqtrrid 5145 | A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.) |
| ⊢ 𝐴𝑅𝐵 & ⊢ (𝜑 → 𝐶 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | eqbrtrdi 5146 | A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ 𝐵𝑅𝐶 ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | eqbrtrrdi 5147 | A chained equality inference for a binary relation. (Contributed by NM, 4-Jan-2006.) |
| ⊢ (𝜑 → 𝐵 = 𝐴) & ⊢ 𝐵𝑅𝐶 ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | breqtrdi 5148 | A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
| ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ 𝐵 = 𝐶 ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | breqtrrdi 5149 | A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.) |
| ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ 𝐶 = 𝐵 ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
| Theorem | ssbrd 5150 | Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) | ||
| Theorem | ssbr 5151 | Implication from a subclass relationship of binary relations. (Contributed by Peter Mazsa, 11-Nov-2019.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) | ||
| Theorem | ssbri 5152 | Inference from a subclass relationship of binary relations. (Contributed by NM, 28-Mar-2007.) (Revised by Mario Carneiro, 8-Feb-2015.) |
| ⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) | ||
| Theorem | nfbrd 5153 | Deduction version of bound-variable hypothesis builder nfbr 5154. (Contributed by NM, 13-Dec-2005.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝑅) & ⊢ (𝜑 → Ⅎ𝑥𝐵) ⇒ ⊢ (𝜑 → Ⅎ𝑥 𝐴𝑅𝐵) | ||
| Theorem | nfbr 5154 | Bound-variable hypothesis builder for binary relation. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥 𝐴𝑅𝐵 | ||
| Theorem | brab1 5155* | Relationship between a binary relation and a class abstraction. (Contributed by Andrew Salmon, 8-Jul-2011.) |
| ⊢ (𝑥𝑅𝐴 ↔ 𝑥 ∈ {𝑧 ∣ 𝑧𝑅𝐴}) | ||
| Theorem | br0 5156 | The empty binary relation never holds. (Contributed by NM, 23-Aug-2018.) |
| ⊢ ¬ 𝐴∅𝐵 | ||
| Theorem | brne0 5157 | If two sets are in a binary relation, the relation cannot be empty. (Contributed by Alexander van der Vekens, 7-Jul-2018.) |
| ⊢ (𝐴𝑅𝐵 → 𝑅 ≠ ∅) | ||
| Theorem | brun 5158 | The union of two binary relations. (Contributed by NM, 21-Dec-2008.) |
| ⊢ (𝐴(𝑅 ∪ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∨ 𝐴𝑆𝐵)) | ||
| Theorem | brin 5159 | The intersection of two relations. (Contributed by FL, 7-Oct-2008.) |
| ⊢ (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ 𝐴𝑆𝐵)) | ||
| Theorem | brdif 5160 | The difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2011.) |
| ⊢ (𝐴(𝑅 ∖ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ ¬ 𝐴𝑆𝐵)) | ||
| Theorem | sbcbr123 5161 | Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) (Revised by NM, 22-Aug-2018.) |
| ⊢ ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝑅⦋𝐴 / 𝑥⦌𝐶) | ||
| Theorem | sbcbr 5162* | Move substitution in and out of a binary relation. (Contributed by NM, 23-Aug-2018.) |
| ⊢ ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ 𝐵⦋𝐴 / 𝑥⦌𝑅𝐶) | ||
| Theorem | sbcbr12g 5163* | Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵𝑅⦋𝐴 / 𝑥⦌𝐶)) | ||
| Theorem | sbcbr1g 5164* | Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵𝑅𝐶)) | ||
| Theorem | sbcbr2g 5165* | Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ 𝐵𝑅⦋𝐴 / 𝑥⦌𝐶)) | ||
| Theorem | brsymdif 5166 | Characterization of the symmetric difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2012.) |
| ⊢ (𝐴(𝑅 △ 𝑆)𝐵 ↔ ¬ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) | ||
| Theorem | brralrspcev 5167* | Restricted existential specialization with a restricted universal quantifier over a relation, closed form. (Contributed by AV, 20-Aug-2022.) |
| ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) | ||
| Theorem | brimralrspcev 5168* | Restricted existential specialization with a restricted universal quantifier over an implication with a relation in the antecedent, closed form. (Contributed by AV, 20-Aug-2022.) |
| ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 ((𝜑 ∧ 𝐴𝑅𝐵) → 𝜓)) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝜑 ∧ 𝐴𝑅𝑥) → 𝜓)) | ||
| Syntax | copab 5169 | Extend class notation to include ordered-pair class abstraction (class builder). |
| class {〈𝑥, 𝑦〉 ∣ 𝜑} | ||
| Definition | df-opab 5170* | Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually 𝑥 and 𝑦 are distinct, although the definition does not require it (see dfid2 5535 for a case where they are not distinct). The brace notation is called "class abstraction" by Quine; it is also called "class builder" in the literature. An alternate definition using no existential quantifiers is shown by dfopab2 8031. An example is given by ex-opab 30361. (Contributed by NM, 4-Jul-1994.) |
| ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | ||
| Theorem | opabss 5171* | The collection of ordered pairs in a class is a subclass of it. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} ⊆ 𝑅 | ||
| Theorem | opabbid 5172 | Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) | ||
| Theorem | opabbidv 5173* | Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) | ||
| Theorem | opabbii 5174 | Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.) |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} | ||
| Theorem | nfopabd 5175* | Bound-variable hypothesis builder for class abstraction. Deduction form. (Contributed by Scott Fenton, 26-Oct-2024.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑧𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑧{〈𝑥, 𝑦〉 ∣ 𝜓}) | ||
| Theorem | nfopab 5176* | Bound-variable hypothesis builder for class abstraction. (Contributed by NM, 1-Sep-1999.) Remove disjoint variable conditions. (Revised by Andrew Salmon, 11-Jul-2011.) (Revised by Scott Fenton, 26-Oct-2024.) |
| ⊢ Ⅎ𝑧𝜑 ⇒ ⊢ Ⅎ𝑧{〈𝑥, 𝑦〉 ∣ 𝜑} | ||
| Theorem | nfopab1 5177 | The first abstraction variable in an ordered-pair class abstraction is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} | ||
| Theorem | nfopab2 5178 | The second abstraction variable in an ordered-pair class abstraction is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} | ||
| Theorem | cbvopab 5179* | Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 14-Sep-2003.) |
| ⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑤𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜓 & ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑤〉 ∣ 𝜓} | ||
| Theorem | cbvopabv 5180* | Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 15-Oct-1996.) Reduce axiom usage. (Revised by GG, 15-Oct-2024.) |
| ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑤〉 ∣ 𝜓} | ||
| Theorem | cbvopab1 5181* | Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 6-Oct-2004.) (Revised by Mario Carneiro, 14-Oct-2016.) Add disjoint variable condition to avoid ax-13 2370. See cbvopab1g 5182 for a less restrictive version requiring more axioms. (Revised by GG, 17-Jan-2024.) |
| ⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ 𝜓} | ||
| Theorem | cbvopab1g 5182* | Change first bound variable in an ordered-pair class abstraction, using explicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2370. See cbvopab1 5181 for a version with more disjoint variable conditions, but not requiring ax-13 2370. (Contributed by NM, 6-Oct-2004.) (Revised by Mario Carneiro, 14-Oct-2016.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ 𝜓} | ||
| Theorem | cbvopab2 5183* | Change second bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 22-Aug-2013.) |
| ⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑦𝜓 & ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑧〉 ∣ 𝜓} | ||
| Theorem | cbvopab1s 5184* | Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 31-Jul-2003.) |
| ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ [𝑧 / 𝑥]𝜑} | ||
| Theorem | cbvopab1v 5185* | Rule used to change the first bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) Reduce axiom usage. (Revised by GG, 17-Nov-2024.) |
| ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ 𝜓} | ||
| Theorem | cbvopab2v 5186* | Rule used to change the second bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 2-Sep-1999.) |
| ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑧〉 ∣ 𝜓} | ||
| Theorem | unopab 5187 | Union of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.) |
| ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∪ {〈𝑥, 𝑦〉 ∣ 𝜓}) = {〈𝑥, 𝑦〉 ∣ (𝜑 ∨ 𝜓)} | ||
| Syntax | cmpt 5188 | Extend the definition of a class to include maps-to notation for defining a function via a rule. |
| class (𝑥 ∈ 𝐴 ↦ 𝐵) | ||
| Definition | df-mpt 5189* | Define maps-to notation for defining a function via a rule. Read as "the function which maps 𝑥 (in 𝐴) to 𝐵(𝑥)". The class expression 𝐵 is the value of the function at 𝑥 and normally contains the variable 𝑥. An example is the square function for complex numbers, (𝑥 ∈ ℂ ↦ (𝑥↑2)). Similar to the definition of mapping in [ChoquetDD] p. 2. (Contributed by NM, 17-Feb-2008.) |
| ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | ||
| Theorem | mpteq12da 5190 | An equality inference for the maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) Remove dependency on ax-10 2142. (Revised by SN, 11-Nov-2024.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | ||
| Theorem | mpteq12df 5191 | An equality inference for the maps-to notation. Compare mpteq12dv 5194. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 11-Dec-2016.) (Proof shortened by SN, 11-Nov-2024.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | ||
| Theorem | mpteq12f 5192 | An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
| ⊢ ((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | ||
| Theorem | mpteq12dva 5193* | An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017.) Remove dependency on ax-10 2142, ax-12 2178. (Revised by SN, 11-Nov-2024.) |
| ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | ||
| Theorem | mpteq12dv 5194* | An equality inference for the maps-to notation. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 16-Dec-2013.) Remove dependency on ax-10 2142, ax-12 2178. (Revised by SN and GG, 1-Dec-2023.) |
| ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | ||
| Theorem | mpteq12 5195* | An equality theorem for the maps-to notation. (Contributed by NM, 16-Dec-2013.) |
| ⊢ ((𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | ||
| Theorem | mpteq1 5196* | An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) (Proof shortened by SN, 11-Nov-2024.) |
| ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
| Theorem | mpteq1d 5197* | An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 11-Jun-2016.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
| Theorem | mpteq1i 5198 | An equality theorem for the maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) Remove all disjoint variable conditions. (Revised by SN, 11-Nov-2024.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) | ||
| Theorem | mpteq2da 5199 | Slightly more general equality inference for the maps-to notation. (Contributed by FL, 14-Sep-2013.) (Revised by Mario Carneiro, 16-Dec-2013.) (Proof shortened by SN, 11-Nov-2024.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | ||
| Theorem | mpteq2dva 5200* | Slightly more general equality inference for the maps-to notation. (Contributed by Scott Fenton, 25-Apr-2012.) Remove dependency on ax-10 2142. (Revised by SN, 11-Nov-2024.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |