Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfeu | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the unique existential quantifier. Note that 𝑥 and 𝑦 need not be disjoint. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker nfeuw 2593 when possible. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 7-Oct-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfeu.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfeu | ⊢ Ⅎ𝑥∃!𝑦𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1808 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfeu.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
4 | 1, 3 | nfeud 2592 | . 2 ⊢ (⊤ → Ⅎ𝑥∃!𝑦𝜑) |
5 | 4 | mptru 1546 | 1 ⊢ Ⅎ𝑥∃!𝑦𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1540 Ⅎwnf 1787 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-mo 2540 df-eu 2569 |
This theorem is referenced by: 2eu7 2659 2eu8 2660 |
Copyright terms: Public domain | W3C validator |