| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfeu | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the unique existential quantifier. Note that 𝑥 and 𝑦 need not be disjoint. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker nfeuw 2588 when possible. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 7-Oct-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfeu.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfeu | ⊢ Ⅎ𝑥∃!𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1805 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 2 | nfeu.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 4 | 1, 3 | nfeud 2587 | . 2 ⊢ (⊤ → Ⅎ𝑥∃!𝑦𝜑) |
| 5 | 4 | mptru 1548 | 1 ⊢ Ⅎ𝑥∃!𝑦𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1542 Ⅎwnf 1784 ∃!weu 2563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-11 2160 ax-12 2180 ax-13 2372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-mo 2535 df-eu 2564 |
| This theorem is referenced by: 2eu7 2653 2eu8 2654 |
| Copyright terms: Public domain | W3C validator |