![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfeu | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the unique existential quantifier. Note that 𝑥 and 𝑦 need not be disjoint. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfeu.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfeu | ⊢ Ⅎ𝑥∃!𝑦𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1786 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfeu.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
4 | 1, 3 | nfeud 2638 | . 2 ⊢ (⊤ → Ⅎ𝑥∃!𝑦𝜑) |
5 | 4 | mptru 1529 | 1 ⊢ Ⅎ𝑥∃!𝑦𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1523 Ⅎwnf 1765 ∃!weu 2611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-mo 2576 df-eu 2612 |
This theorem is referenced by: 2eu7 2715 2eu8 2716 eusv2nf 5187 reusv2lem3 5192 bnj1489 31942 setrec2 44278 |
Copyright terms: Public domain | W3C validator |