|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nfeu | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the unique existential quantifier. Note that 𝑥 and 𝑦 need not be disjoint. Usage of this theorem is discouraged because it depends on ax-13 2376. Use the weaker nfeuw 2592 when possible. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 7-Oct-2016.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| nfeu.1 | ⊢ Ⅎ𝑥𝜑 | 
| Ref | Expression | 
|---|---|
| nfeu | ⊢ Ⅎ𝑥∃!𝑦𝜑 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nftru 1803 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 2 | nfeu.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) | 
| 4 | 1, 3 | nfeud 2591 | . 2 ⊢ (⊤ → Ⅎ𝑥∃!𝑦𝜑) | 
| 5 | 4 | mptru 1546 | 1 ⊢ Ⅎ𝑥∃!𝑦𝜑 | 
| Colors of variables: wff setvar class | 
| Syntax hints: ⊤wtru 1540 Ⅎwnf 1782 ∃!weu 2567 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-11 2156 ax-12 2176 ax-13 2376 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-mo 2539 df-eu 2568 | 
| This theorem is referenced by: 2eu7 2657 2eu8 2658 | 
| Copyright terms: Public domain | W3C validator |