Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfid4 | Structured version Visualization version GIF version |
Description: The identity function expressed using maps-to notation. (Contributed by Scott Fenton, 15-Dec-2017.) |
Ref | Expression |
---|---|
dfid4 | ⊢ I = (𝑥 ∈ V ↦ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcom 2022 | . . . 4 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
2 | vex 3426 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | 2 | biantrur 530 | . . . 4 ⊢ (𝑦 = 𝑥 ↔ (𝑥 ∈ V ∧ 𝑦 = 𝑥)) |
4 | 1, 3 | bitri 274 | . . 3 ⊢ (𝑥 = 𝑦 ↔ (𝑥 ∈ V ∧ 𝑦 = 𝑥)) |
5 | 4 | opabbii 5137 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 = 𝑥)} |
6 | df-id 5480 | . 2 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
7 | df-mpt 5154 | . 2 ⊢ (𝑥 ∈ V ↦ 𝑥) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 = 𝑥)} | |
8 | 5, 6, 7 | 3eqtr4i 2776 | 1 ⊢ I = (𝑥 ∈ V ↦ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {copab 5132 ↦ cmpt 5153 I cid 5479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-opab 5133 df-mpt 5154 df-id 5480 |
This theorem is referenced by: dfid5 14666 dfid6 14667 dfid7 41109 |
Copyright terms: Public domain | W3C validator |