![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfid4 | Structured version Visualization version GIF version |
Description: The identity function expressed using maps-to notation. (Contributed by Scott Fenton, 15-Dec-2017.) |
Ref | Expression |
---|---|
dfid4 | ⊢ I = (𝑥 ∈ V ↦ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcom 2022 | . . . 4 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
2 | vex 3450 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | 2 | biantrur 532 | . . . 4 ⊢ (𝑦 = 𝑥 ↔ (𝑥 ∈ V ∧ 𝑦 = 𝑥)) |
4 | 1, 3 | bitri 275 | . . 3 ⊢ (𝑥 = 𝑦 ↔ (𝑥 ∈ V ∧ 𝑦 = 𝑥)) |
5 | 4 | opabbii 5173 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 = 𝑥)} |
6 | df-id 5532 | . 2 ⊢ I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦} | |
7 | df-mpt 5190 | . 2 ⊢ (𝑥 ∈ V ↦ 𝑥) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 = 𝑥)} | |
8 | 5, 6, 7 | 3eqtr4i 2775 | 1 ⊢ I = (𝑥 ∈ V ↦ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3446 {copab 5168 ↦ cmpt 5189 I cid 5531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3448 df-opab 5169 df-mpt 5190 df-id 5532 |
This theorem is referenced by: dfid5 14913 dfid6 14914 dfid7 41891 |
Copyright terms: Public domain | W3C validator |