MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfid4 Structured version   Visualization version   GIF version

Theorem dfid4 5463
Description: The identity function expressed using maps-to notation. (Contributed by Scott Fenton, 15-Dec-2017.)
Assertion
Ref Expression
dfid4 I = (𝑥 ∈ V ↦ 𝑥)

Proof of Theorem dfid4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 equcom 2025 . . . 4 (𝑥 = 𝑦𝑦 = 𝑥)
2 vex 3499 . . . . 5 𝑥 ∈ V
32biantrur 533 . . . 4 (𝑦 = 𝑥 ↔ (𝑥 ∈ V ∧ 𝑦 = 𝑥))
41, 3bitri 277 . . 3 (𝑥 = 𝑦 ↔ (𝑥 ∈ V ∧ 𝑦 = 𝑥))
54opabbii 5135 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 = 𝑥)}
6 df-id 5462 . 2 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
7 df-mpt 5149 . 2 (𝑥 ∈ V ↦ 𝑥) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 = 𝑥)}
85, 6, 73eqtr4i 2856 1 I = (𝑥 ∈ V ↦ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1537  wcel 2114  Vcvv 3496  {copab 5130  cmpt 5148   I cid 5461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-v 3498  df-opab 5131  df-mpt 5149  df-id 5462
This theorem is referenced by:  dfid5  14388  dfid6  14389  dfid7  39979
  Copyright terms: Public domain W3C validator