![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-id | Structured version Visualization version GIF version |
Description: Define the identity relation. Definition 9.15 of [Quine] p. 64. For example, 5 I 5 and ¬ 4 I 5 (ex-id 30466). (Contributed by NM, 13-Aug-1995.) |
Ref | Expression |
---|---|
df-id | ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cid 5592 | . 2 class I | |
2 | vx | . . . 4 setvar 𝑥 | |
3 | vy | . . . 4 setvar 𝑦 | |
4 | 2, 3 | weq 1962 | . . 3 wff 𝑥 = 𝑦 |
5 | 4, 2, 3 | copab 5228 | . 2 class {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} |
6 | 1, 5 | wceq 1537 | 1 wff I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} |
Colors of variables: wff setvar class |
This definition is referenced by: dfid4 5594 dfid2 5595 dfid3 5596 reli 5850 ideqg 5876 opabresid 6079 cnvi 6173 dffun2OLDOLD 6585 fsplit 8158 ider 8800 epinid0 9669 bj-dfid2ALT 37031 bj-opelidb 37118 bj-ideqgALT 37124 bj-idreseq 37128 bj-idreseqb 37129 bj-ideqg1 37130 bj-ideqg1ALT 37131 cossssid2 38424 cossid 38436 |
Copyright terms: Public domain | W3C validator |