MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-id Structured version   Visualization version   GIF version

Definition df-id 5488
Description: Define the identity relation. Definition 9.15 of [Quine] p. 64. For example, 5 I 5 and ¬ 4 I 5 (ex-id 28805). (Contributed by NM, 13-Aug-1995.)
Assertion
Ref Expression
df-id I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-id
StepHypRef Expression
1 cid 5487 . 2 class I
2 vx . . . 4 setvar 𝑥
3 vy . . . 4 setvar 𝑦
42, 3weq 1963 . . 3 wff 𝑥 = 𝑦
54, 2, 3copab 5135 . 2 class {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
61, 5wceq 1538 1 wff I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
Colors of variables: wff setvar class
This definition is referenced by:  dfid4  5489  dfid2  5490  dfid3  5491  reli  5736  ideqg  5761  opabresid  5958  opabresidOLD  5960  cnvi  6048  dffun2OLD  6446  fsplit  7964  ider  8541  epinid0  9366  bj-dfid2ALT  35243  bj-opelidb  35330  bj-ideqgALT  35336  bj-idreseq  35340  bj-idreseqb  35341  bj-ideqg1  35342  bj-ideqg1ALT  35343  cossssid2  36591  cossid  36603
  Copyright terms: Public domain W3C validator