![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-id | Structured version Visualization version GIF version |
Description: Define the identity relation. Definition 9.15 of [Quine] p. 64. For example, 5 I 5 and ¬ 4 I 5 (ex-id 30367). (Contributed by NM, 13-Aug-1995.) |
Ref | Expression |
---|---|
df-id | ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cid 5579 | . 2 class I | |
2 | vx | . . . 4 setvar 𝑥 | |
3 | vy | . . . 4 setvar 𝑦 | |
4 | 2, 3 | weq 1959 | . . 3 wff 𝑥 = 𝑦 |
5 | 4, 2, 3 | copab 5215 | . 2 class {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} |
6 | 1, 5 | wceq 1534 | 1 wff I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} |
Colors of variables: wff setvar class |
This definition is referenced by: dfid4 5581 dfid2 5582 dfid3 5583 reli 5832 ideqg 5858 opabresid 6059 cnvi 6153 dffun2OLDOLD 6566 fsplit 8131 ider 8771 epinid0 9643 bj-dfid2ALT 36772 bj-opelidb 36859 bj-ideqgALT 36865 bj-idreseq 36869 bj-idreseqb 36870 bj-ideqg1 36871 bj-ideqg1ALT 36872 cossssid2 38166 cossid 38178 |
Copyright terms: Public domain | W3C validator |