MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-id Structured version   Visualization version   GIF version

Definition df-id 5582
Description: Define the identity relation. Definition 9.15 of [Quine] p. 64. For example, 5 I 5 and ¬ 4 I 5 (ex-id 30462). (Contributed by NM, 13-Aug-1995.)
Assertion
Ref Expression
df-id I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-id
StepHypRef Expression
1 cid 5581 . 2 class I
2 vx . . . 4 setvar 𝑥
3 vy . . . 4 setvar 𝑦
42, 3weq 1959 . . 3 wff 𝑥 = 𝑦
54, 2, 3copab 5209 . 2 class {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
61, 5wceq 1536 1 wff I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
Colors of variables: wff setvar class
This definition is referenced by:  dfid4  5583  dfid2  5584  dfid3  5585  reli  5838  ideqg  5864  opabresid  6069  cnvi  6163  dffun2OLDOLD  6574  fsplit  8140  ider  8780  epinid0  9637  bj-dfid2ALT  37047  bj-opelidb  37134  bj-ideqgALT  37140  bj-idreseq  37144  bj-idreseqb  37145  bj-ideqg1  37146  bj-ideqg1ALT  37147  cossssid2  38449  cossid  38461
  Copyright terms: Public domain W3C validator