| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-id | Structured version Visualization version GIF version | ||
| Description: Define the identity relation. Definition 9.15 of [Quine] p. 64. For example, 5 I 5 and ¬ 4 I 5 (ex-id 30396). (Contributed by NM, 13-Aug-1995.) |
| Ref | Expression |
|---|---|
| df-id | ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cid 5517 | . 2 class I | |
| 2 | vx | . . . 4 setvar 𝑥 | |
| 3 | vy | . . . 4 setvar 𝑦 | |
| 4 | 2, 3 | weq 1962 | . . 3 wff 𝑥 = 𝑦 |
| 5 | 4, 2, 3 | copab 5157 | . 2 class {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} |
| 6 | 1, 5 | wceq 1540 | 1 wff I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfid4 5519 dfid2 5520 dfid3 5521 reli 5773 ideqg 5798 opabresid 6005 cnvi 6094 fsplit 8057 ider 8669 epinid0 9514 bj-dfid2ALT 37041 bj-opelidb 37128 bj-ideqgALT 37134 bj-idreseq 37138 bj-idreseqb 37139 bj-ideqg1 37140 bj-ideqg1ALT 37141 cossssid2 38447 cossid 38459 |
| Copyright terms: Public domain | W3C validator |