Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-id | Structured version Visualization version GIF version |
Description: Define the identity relation. Definition 9.15 of [Quine] p. 64. For example, 5 I 5 and ¬ 4 I 5 (ex-id 28699). (Contributed by NM, 13-Aug-1995.) |
Ref | Expression |
---|---|
df-id | ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cid 5479 | . 2 class I | |
2 | vx | . . . 4 setvar 𝑥 | |
3 | vy | . . . 4 setvar 𝑦 | |
4 | 2, 3 | weq 1967 | . . 3 wff 𝑥 = 𝑦 |
5 | 4, 2, 3 | copab 5132 | . 2 class {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} |
6 | 1, 5 | wceq 1539 | 1 wff I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} |
Colors of variables: wff setvar class |
This definition is referenced by: dfid4 5481 dfid2 5482 dfid3 5483 reli 5725 ideqg 5749 opabresid 5946 opabresidOLD 5948 cnvi 6034 dffun2 6428 fsplit 7928 ider 8492 epinid0 9289 bj-dfid2ALT 35163 bj-opelidb 35250 bj-ideqgALT 35256 bj-idreseq 35260 bj-idreseqb 35261 bj-ideqg1 35262 bj-ideqg1ALT 35263 cossssid2 36513 cossid 36525 |
Copyright terms: Public domain | W3C validator |