Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-id | Structured version Visualization version GIF version |
Description: Define the identity relation. Definition 9.15 of [Quine] p. 64. For example, 5 I 5 and ¬ 4 I 5 (ex-id 28934). (Contributed by NM, 13-Aug-1995.) |
Ref | Expression |
---|---|
df-id | ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cid 5506 | . 2 class I | |
2 | vx | . . . 4 setvar 𝑥 | |
3 | vy | . . . 4 setvar 𝑦 | |
4 | 2, 3 | weq 1965 | . . 3 wff 𝑥 = 𝑦 |
5 | 4, 2, 3 | copab 5149 | . 2 class {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} |
6 | 1, 5 | wceq 1540 | 1 wff I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} |
Colors of variables: wff setvar class |
This definition is referenced by: dfid4 5508 dfid2 5509 dfid3 5510 reli 5756 ideqg 5781 opabresid 5977 cnvi 6068 dffun2OLDOLD 6478 fsplit 8004 ider 8584 epinid0 9436 bj-dfid2ALT 35308 bj-opelidb 35395 bj-ideqgALT 35401 bj-idreseq 35405 bj-idreseqb 35406 bj-ideqg1 35407 bj-ideqg1ALT 35408 cossssid2 36702 cossid 36714 |
Copyright terms: Public domain | W3C validator |