![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-id | Structured version Visualization version GIF version |
Description: Define the identity relation. Definition 9.15 of [Quine] p. 64. For example, 5 I 5 and ¬ 4 I 5 (ex-id 30182). (Contributed by NM, 13-Aug-1995.) |
Ref | Expression |
---|---|
df-id | ⊢ I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cid 5564 | . 2 class I | |
2 | vx | . . . 4 setvar 𝑥 | |
3 | vy | . . . 4 setvar 𝑦 | |
4 | 2, 3 | weq 1958 | . . 3 wff 𝑥 = 𝑦 |
5 | 4, 2, 3 | copab 5201 | . 2 class {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦} |
6 | 1, 5 | wceq 1533 | 1 wff I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦} |
Colors of variables: wff setvar class |
This definition is referenced by: dfid4 5566 dfid2 5567 dfid3 5568 reli 5817 ideqg 5842 opabresid 6040 cnvi 6132 dffun2OLDOLD 6546 fsplit 8098 ider 8736 epinid0 9592 bj-dfid2ALT 36447 bj-opelidb 36534 bj-ideqgALT 36540 bj-idreseq 36544 bj-idreseqb 36545 bj-ideqg1 36546 bj-ideqg1ALT 36547 cossssid2 37842 cossid 37854 |
Copyright terms: Public domain | W3C validator |