MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-id Structured version   Visualization version   GIF version

Definition df-id 5480
Description: Define the identity relation. Definition 9.15 of [Quine] p. 64. For example, 5 I 5 and ¬ 4 I 5 (ex-id 28699). (Contributed by NM, 13-Aug-1995.)
Assertion
Ref Expression
df-id I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-id
StepHypRef Expression
1 cid 5479 . 2 class I
2 vx . . . 4 setvar 𝑥
3 vy . . . 4 setvar 𝑦
42, 3weq 1967 . . 3 wff 𝑥 = 𝑦
54, 2, 3copab 5132 . 2 class {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
61, 5wceq 1539 1 wff I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
Colors of variables: wff setvar class
This definition is referenced by:  dfid4  5481  dfid2  5482  dfid3  5483  reli  5725  ideqg  5749  opabresid  5946  opabresidOLD  5948  cnvi  6034  dffun2  6428  fsplit  7928  ider  8492  epinid0  9289  bj-dfid2ALT  35163  bj-opelidb  35250  bj-ideqgALT  35256  bj-idreseq  35260  bj-idreseqb  35261  bj-ideqg1  35262  bj-ideqg1ALT  35263  cossssid2  36513  cossid  36525
  Copyright terms: Public domain W3C validator