MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-id Structured version   Visualization version   GIF version

Definition df-id 5533
Description: Define the identity relation. Definition 9.15 of [Quine] p. 64. For example, 5 I 5 and ¬ 4 I 5 (ex-id 30363). (Contributed by NM, 13-Aug-1995.)
Assertion
Ref Expression
df-id I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-id
StepHypRef Expression
1 cid 5532 . 2 class I
2 vx . . . 4 setvar 𝑥
3 vy . . . 4 setvar 𝑦
42, 3weq 1962 . . 3 wff 𝑥 = 𝑦
54, 2, 3copab 5169 . 2 class {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
61, 5wceq 1540 1 wff I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
Colors of variables: wff setvar class
This definition is referenced by:  dfid4  5534  dfid2  5535  dfid3  5536  reli  5789  ideqg  5815  opabresid  6021  cnvi  6114  dffun2OLDOLD  6523  fsplit  8096  ider  8708  epinid0  9553  bj-dfid2ALT  37053  bj-opelidb  37140  bj-ideqgALT  37146  bj-idreseq  37150  bj-idreseqb  37151  bj-ideqg1  37152  bj-ideqg1ALT  37153  cossssid2  38459  cossid  38471
  Copyright terms: Public domain W3C validator