MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-id Structured version   Visualization version   GIF version

Definition df-id 5455
Description: Define the identity relation. Definition 9.15 of [Quine] p. 64. For example, 5 I 5 and ¬ 4 I 5 (ex-id 28517). (Contributed by NM, 13-Aug-1995.)
Assertion
Ref Expression
df-id I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-id
StepHypRef Expression
1 cid 5454 . 2 class I
2 vx . . . 4 setvar 𝑥
3 vy . . . 4 setvar 𝑦
42, 3weq 1971 . . 3 wff 𝑥 = 𝑦
54, 2, 3copab 5115 . 2 class {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
61, 5wceq 1543 1 wff I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
Colors of variables: wff setvar class
This definition is referenced by:  dfid4  5456  dfid3  5457  reli  5696  ideqg  5720  opabresid  5917  opabresidOLD  5919  cnvi  6005  dffun2  6390  fsplit  7885  ider  8427  epinid0  9216  bj-opelidb  35058  bj-ideqgALT  35064  bj-idreseq  35068  bj-idreseqb  35069  bj-ideqg1  35070  bj-ideqg1ALT  35071  cossssid2  36323  cossid  36335
  Copyright terms: Public domain W3C validator