Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfid7 Structured version   Visualization version   GIF version

Theorem dfid7 43608
Description: Definition of identity relation as the trivial closure. (Contributed by RP, 26-Jul-2020.)
Assertion
Ref Expression
dfid7 I = (𝑥 ∈ V ↦ {𝑦 ∣ (𝑥𝑦 ∧ ⊤)})
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfid7
StepHypRef Expression
1 dfid4 5537 . 2 I = (𝑥 ∈ V ↦ 𝑥)
2 ancom 460 . . . . . . 7 ((𝑥𝑦 ∧ ⊤) ↔ (⊤ ∧ 𝑥𝑦))
3 truan 1551 . . . . . . 7 ((⊤ ∧ 𝑥𝑦) ↔ 𝑥𝑦)
42, 3bitri 275 . . . . . 6 ((𝑥𝑦 ∧ ⊤) ↔ 𝑥𝑦)
54abbii 2797 . . . . 5 {𝑦 ∣ (𝑥𝑦 ∧ ⊤)} = {𝑦𝑥𝑦}
65inteqi 4917 . . . 4 {𝑦 ∣ (𝑥𝑦 ∧ ⊤)} = {𝑦𝑥𝑦}
7 vex 3454 . . . . 5 𝑥 ∈ V
87intmin2 4942 . . . 4 {𝑦𝑥𝑦} = 𝑥
96, 8eqtri 2753 . . 3 {𝑦 ∣ (𝑥𝑦 ∧ ⊤)} = 𝑥
109mpteq2i 5206 . 2 (𝑥 ∈ V ↦ {𝑦 ∣ (𝑥𝑦 ∧ ⊤)}) = (𝑥 ∈ V ↦ 𝑥)
111, 10eqtr4i 2756 1 I = (𝑥 ∈ V ↦ {𝑦 ∣ (𝑥𝑦 ∧ ⊤)})
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wtru 1541  {cab 2708  Vcvv 3450  wss 3917   cint 4913  cmpt 5191   I cid 5535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-ss 3934  df-int 4914  df-opab 5173  df-mpt 5192  df-id 5536
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator