| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfid7 | Structured version Visualization version GIF version | ||
| Description: Definition of identity relation as the trivial closure. (Contributed by RP, 26-Jul-2020.) |
| Ref | Expression |
|---|---|
| dfid7 | ⊢ I = (𝑥 ∈ V ↦ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ⊤)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfid4 5579 | . 2 ⊢ I = (𝑥 ∈ V ↦ 𝑥) | |
| 2 | ancom 460 | . . . . . . 7 ⊢ ((𝑥 ⊆ 𝑦 ∧ ⊤) ↔ (⊤ ∧ 𝑥 ⊆ 𝑦)) | |
| 3 | truan 1551 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ⊆ 𝑦) ↔ 𝑥 ⊆ 𝑦) | |
| 4 | 2, 3 | bitri 275 | . . . . . 6 ⊢ ((𝑥 ⊆ 𝑦 ∧ ⊤) ↔ 𝑥 ⊆ 𝑦) |
| 5 | 4 | abbii 2809 | . . . . 5 ⊢ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ⊤)} = {𝑦 ∣ 𝑥 ⊆ 𝑦} |
| 6 | 5 | inteqi 4950 | . . . 4 ⊢ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ⊤)} = ∩ {𝑦 ∣ 𝑥 ⊆ 𝑦} |
| 7 | vex 3484 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 8 | 7 | intmin2 4975 | . . . 4 ⊢ ∩ {𝑦 ∣ 𝑥 ⊆ 𝑦} = 𝑥 |
| 9 | 6, 8 | eqtri 2765 | . . 3 ⊢ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ⊤)} = 𝑥 |
| 10 | 9 | mpteq2i 5247 | . 2 ⊢ (𝑥 ∈ V ↦ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ⊤)}) = (𝑥 ∈ V ↦ 𝑥) |
| 11 | 1, 10 | eqtr4i 2768 | 1 ⊢ I = (𝑥 ∈ V ↦ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ⊤)}) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ⊤wtru 1541 {cab 2714 Vcvv 3480 ⊆ wss 3951 ∩ cint 4946 ↦ cmpt 5225 I cid 5577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-ss 3968 df-int 4947 df-opab 5206 df-mpt 5226 df-id 5578 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |