Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfid7 Structured version   Visualization version   GIF version

Theorem dfid7 43574
Description: Definition of identity relation as the trivial closure. (Contributed by RP, 26-Jul-2020.)
Assertion
Ref Expression
dfid7 I = (𝑥 ∈ V ↦ {𝑦 ∣ (𝑥𝑦 ∧ ⊤)})
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfid7
StepHypRef Expression
1 dfid4 5594 . 2 I = (𝑥 ∈ V ↦ 𝑥)
2 ancom 460 . . . . . . 7 ((𝑥𝑦 ∧ ⊤) ↔ (⊤ ∧ 𝑥𝑦))
3 truan 1548 . . . . . . 7 ((⊤ ∧ 𝑥𝑦) ↔ 𝑥𝑦)
42, 3bitri 275 . . . . . 6 ((𝑥𝑦 ∧ ⊤) ↔ 𝑥𝑦)
54abbii 2812 . . . . 5 {𝑦 ∣ (𝑥𝑦 ∧ ⊤)} = {𝑦𝑥𝑦}
65inteqi 4974 . . . 4 {𝑦 ∣ (𝑥𝑦 ∧ ⊤)} = {𝑦𝑥𝑦}
7 vex 3492 . . . . 5 𝑥 ∈ V
87intmin2 4999 . . . 4 {𝑦𝑥𝑦} = 𝑥
96, 8eqtri 2768 . . 3 {𝑦 ∣ (𝑥𝑦 ∧ ⊤)} = 𝑥
109mpteq2i 5271 . 2 (𝑥 ∈ V ↦ {𝑦 ∣ (𝑥𝑦 ∧ ⊤)}) = (𝑥 ∈ V ↦ 𝑥)
111, 10eqtr4i 2771 1 I = (𝑥 ∈ V ↦ {𝑦 ∣ (𝑥𝑦 ∧ ⊤)})
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wtru 1538  {cab 2717  Vcvv 3488  wss 3976   cint 4970  cmpt 5249   I cid 5592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-ss 3993  df-int 4971  df-opab 5229  df-mpt 5250  df-id 5593
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator