![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfid7 | Structured version Visualization version GIF version |
Description: Definition of identity relation as the trivial closure. (Contributed by RP, 26-Jul-2020.) |
Ref | Expression |
---|---|
dfid7 | ⊢ I = (𝑥 ∈ V ↦ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ⊤)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfid4 5311 | . 2 ⊢ I = (𝑥 ∈ V ↦ 𝑥) | |
2 | ancom 453 | . . . . . . 7 ⊢ ((𝑥 ⊆ 𝑦 ∧ ⊤) ↔ (⊤ ∧ 𝑥 ⊆ 𝑦)) | |
3 | truan 1519 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ⊆ 𝑦) ↔ 𝑥 ⊆ 𝑦) | |
4 | 2, 3 | bitri 267 | . . . . . 6 ⊢ ((𝑥 ⊆ 𝑦 ∧ ⊤) ↔ 𝑥 ⊆ 𝑦) |
5 | 4 | abbii 2839 | . . . . 5 ⊢ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ⊤)} = {𝑦 ∣ 𝑥 ⊆ 𝑦} |
6 | 5 | inteqi 4750 | . . . 4 ⊢ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ⊤)} = ∩ {𝑦 ∣ 𝑥 ⊆ 𝑦} |
7 | vex 3413 | . . . . 5 ⊢ 𝑥 ∈ V | |
8 | 7 | intmin2 4773 | . . . 4 ⊢ ∩ {𝑦 ∣ 𝑥 ⊆ 𝑦} = 𝑥 |
9 | 6, 8 | eqtri 2797 | . . 3 ⊢ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ⊤)} = 𝑥 |
10 | 9 | mpteq2i 5016 | . 2 ⊢ (𝑥 ∈ V ↦ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ⊤)}) = (𝑥 ∈ V ↦ 𝑥) |
11 | 1, 10 | eqtr4i 2800 | 1 ⊢ I = (𝑥 ∈ V ↦ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ⊤)}) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 387 = wceq 1508 ⊤wtru 1509 {cab 2753 Vcvv 3410 ⊆ wss 3824 ∩ cint 4746 ↦ cmpt 5005 I cid 5308 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2745 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ral 3088 df-rab 3092 df-v 3412 df-in 3831 df-ss 3838 df-int 4747 df-opab 4989 df-mpt 5006 df-id 5309 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |