| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfid7 | Structured version Visualization version GIF version | ||
| Description: Definition of identity relation as the trivial closure. (Contributed by RP, 26-Jul-2020.) |
| Ref | Expression |
|---|---|
| dfid7 | ⊢ I = (𝑥 ∈ V ↦ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ⊤)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfid4 5534 | . 2 ⊢ I = (𝑥 ∈ V ↦ 𝑥) | |
| 2 | ancom 460 | . . . . . . 7 ⊢ ((𝑥 ⊆ 𝑦 ∧ ⊤) ↔ (⊤ ∧ 𝑥 ⊆ 𝑦)) | |
| 3 | truan 1551 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ⊆ 𝑦) ↔ 𝑥 ⊆ 𝑦) | |
| 4 | 2, 3 | bitri 275 | . . . . . 6 ⊢ ((𝑥 ⊆ 𝑦 ∧ ⊤) ↔ 𝑥 ⊆ 𝑦) |
| 5 | 4 | abbii 2796 | . . . . 5 ⊢ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ⊤)} = {𝑦 ∣ 𝑥 ⊆ 𝑦} |
| 6 | 5 | inteqi 4914 | . . . 4 ⊢ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ⊤)} = ∩ {𝑦 ∣ 𝑥 ⊆ 𝑦} |
| 7 | vex 3451 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 8 | 7 | intmin2 4939 | . . . 4 ⊢ ∩ {𝑦 ∣ 𝑥 ⊆ 𝑦} = 𝑥 |
| 9 | 6, 8 | eqtri 2752 | . . 3 ⊢ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ⊤)} = 𝑥 |
| 10 | 9 | mpteq2i 5203 | . 2 ⊢ (𝑥 ∈ V ↦ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ⊤)}) = (𝑥 ∈ V ↦ 𝑥) |
| 11 | 1, 10 | eqtr4i 2755 | 1 ⊢ I = (𝑥 ∈ V ↦ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ⊤)}) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ⊤wtru 1541 {cab 2707 Vcvv 3447 ⊆ wss 3914 ∩ cint 4910 ↦ cmpt 5188 I cid 5532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-ss 3931 df-int 4911 df-opab 5170 df-mpt 5189 df-id 5533 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |