Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfqs3 Structured version   Visualization version   GIF version

Theorem dfqs3 42250
Description: Alternate definition of quotient set. (Contributed by Steven Nguyen, 7-Jun-2023.)
Assertion
Ref Expression
dfqs3 (𝐴 / 𝑅) = 𝑥𝐴 {[𝑥]𝑅}
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem dfqs3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-qs 8623 . 2 (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
2 iunsn 5012 . 2 𝑥𝐴 {[𝑥]𝑅} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
31, 2eqtr4i 2756 1 (𝐴 / 𝑅) = 𝑥𝐴 {[𝑥]𝑅}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  {cab 2708  wrex 3054  {csn 4574   ciun 4939  [cec 8615   / cqs 8616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-rex 3055  df-v 3436  df-sn 4575  df-iun 4941  df-qs 8623
This theorem is referenced by:  prjspval2  42625
  Copyright terms: Public domain W3C validator