| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfqs3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of quotient set. (Contributed by Steven Nguyen, 7-Jun-2023.) |
| Ref | Expression |
|---|---|
| dfqs3 | ⊢ (𝐴 / 𝑅) = ∪ 𝑥 ∈ 𝐴 {[𝑥]𝑅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-qs 8680 | . 2 ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} | |
| 2 | iunsn 5033 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {[𝑥]𝑅} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} | |
| 3 | 1, 2 | eqtr4i 2756 | 1 ⊢ (𝐴 / 𝑅) = ∪ 𝑥 ∈ 𝐴 {[𝑥]𝑅} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {cab 2708 ∃wrex 3054 {csn 4592 ∪ ciun 4958 [cec 8672 / cqs 8673 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rex 3055 df-v 3452 df-sn 4593 df-iun 4960 df-qs 8680 |
| This theorem is referenced by: prjspval2 42608 |
| Copyright terms: Public domain | W3C validator |