Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfqs3 Structured version   Visualization version   GIF version

Theorem dfqs3 40139
Description: Alternate definition of quotient set. (Contributed by Steven Nguyen, 7-Jun-2023.)
Assertion
Ref Expression
dfqs3 (𝐴 / 𝑅) = 𝑥𝐴 {[𝑥]𝑅}
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem dfqs3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-qs 8462 . 2 (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
2 iunsn 4991 . 2 𝑥𝐴 {[𝑥]𝑅} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
31, 2eqtr4i 2769 1 (𝐴 / 𝑅) = 𝑥𝐴 {[𝑥]𝑅}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  {cab 2715  wrex 3064  {csn 4558   ciun 4921  [cec 8454   / cqs 8455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rex 3069  df-v 3424  df-sn 4559  df-iun 4923  df-qs 8462
This theorem is referenced by:  prjspval2  40373
  Copyright terms: Public domain W3C validator