Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfqs3 | Structured version Visualization version GIF version |
Description: Alternate definition of quotient set. (Contributed by Steven Nguyen, 7-Jun-2023.) |
Ref | Expression |
---|---|
dfqs3 | ⊢ (𝐴 / 𝑅) = ∪ 𝑥 ∈ 𝐴 {[𝑥]𝑅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-qs 8462 | . 2 ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} | |
2 | iunsn 4991 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {[𝑥]𝑅} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} | |
3 | 1, 2 | eqtr4i 2769 | 1 ⊢ (𝐴 / 𝑅) = ∪ 𝑥 ∈ 𝐴 {[𝑥]𝑅} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 {cab 2715 ∃wrex 3064 {csn 4558 ∪ ciun 4921 [cec 8454 / cqs 8455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rex 3069 df-v 3424 df-sn 4559 df-iun 4923 df-qs 8462 |
This theorem is referenced by: prjspval2 40373 |
Copyright terms: Public domain | W3C validator |