| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfqs3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of quotient set. (Contributed by Steven Nguyen, 7-Jun-2023.) |
| Ref | Expression |
|---|---|
| dfqs3 | ⊢ (𝐴 / 𝑅) = ∪ 𝑥 ∈ 𝐴 {[𝑥]𝑅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-qs 8637 | . 2 ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} | |
| 2 | iunsn 5018 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {[𝑥]𝑅} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} | |
| 3 | 1, 2 | eqtr4i 2759 | 1 ⊢ (𝐴 / 𝑅) = ∪ 𝑥 ∈ 𝐴 {[𝑥]𝑅} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 {cab 2711 ∃wrex 3058 {csn 4577 ∪ ciun 4943 [cec 8629 / cqs 8630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rex 3059 df-v 3440 df-sn 4578 df-iun 4945 df-qs 8637 |
| This theorem is referenced by: prjspval2 42721 |
| Copyright terms: Public domain | W3C validator |