Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfqs3 Structured version   Visualization version   GIF version

Theorem dfqs3 42233
Description: Alternate definition of quotient set. (Contributed by Steven Nguyen, 7-Jun-2023.)
Assertion
Ref Expression
dfqs3 (𝐴 / 𝑅) = 𝑥𝐴 {[𝑥]𝑅}
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem dfqs3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-qs 8769 . 2 (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
2 iunsn 5089 . 2 𝑥𝐴 {[𝑥]𝑅} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
31, 2eqtr4i 2771 1 (𝐴 / 𝑅) = 𝑥𝐴 {[𝑥]𝑅}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  {cab 2717  wrex 3076  {csn 4648   ciun 5015  [cec 8761   / cqs 8762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rex 3077  df-v 3490  df-sn 4649  df-iun 5017  df-qs 8769
This theorem is referenced by:  prjspval2  42568
  Copyright terms: Public domain W3C validator