Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qseq12d Structured version   Visualization version   GIF version

Theorem qseq12d 41530
Description: Equality theorem for quotient set, deduction form. (Contributed by Steven Nguyen, 30-Apr-2023.)
Hypotheses
Ref Expression
qseq12d.1 (𝜑𝐴 = 𝐵)
qseq12d.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
qseq12d (𝜑 → (𝐴 / 𝐶) = (𝐵 / 𝐷))

Proof of Theorem qseq12d
StepHypRef Expression
1 qseq12d.1 . 2 (𝜑𝐴 = 𝐵)
2 qseq12d.2 . 2 (𝜑𝐶 = 𝐷)
3 qseq12 8767 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 / 𝐶) = (𝐵 / 𝐷))
41, 2, 3syl2anc 583 1 (𝜑 → (𝐴 / 𝐶) = (𝐵 / 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540   / cqs 8708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ec 8711  df-qs 8715
This theorem is referenced by:  prjspval  41810
  Copyright terms: Public domain W3C validator