Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qseq12d Structured version   Visualization version   GIF version

Theorem qseq12d 42234
Description: Equality theorem for quotient set, deduction form. (Contributed by Steven Nguyen, 30-Apr-2023.)
Hypotheses
Ref Expression
qseq12d.1 (𝜑𝐴 = 𝐵)
qseq12d.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
qseq12d (𝜑 → (𝐴 / 𝐶) = (𝐵 / 𝐷))

Proof of Theorem qseq12d
StepHypRef Expression
1 qseq12d.1 . 2 (𝜑𝐴 = 𝐵)
2 qseq12d.2 . 2 (𝜑𝐶 = 𝐷)
3 qseq12 8824 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 / 𝐶) = (𝐵 / 𝐷))
41, 2, 3syl2anc 583 1 (𝜑 → (𝐴 / 𝐶) = (𝐵 / 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537   / cqs 8762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ec 8765  df-qs 8769
This theorem is referenced by:  prjspval  42558
  Copyright terms: Public domain W3C validator