![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qseq12d | Structured version Visualization version GIF version |
Description: Equality theorem for quotient set, deduction form. (Contributed by Steven Nguyen, 30-Apr-2023.) |
Ref | Expression |
---|---|
qseq12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
qseq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
qseq12d | ⊢ (𝜑 → (𝐴 / 𝐶) = (𝐵 / 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qseq12d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | qseq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
3 | qseq12 8757 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 / 𝐶) = (𝐵 / 𝐷)) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐴 / 𝐶) = (𝐵 / 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 / cqs 8698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-br 5139 df-opab 5201 df-cnv 5674 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-ec 8701 df-qs 8705 |
This theorem is referenced by: prjspval 41834 |
Copyright terms: Public domain | W3C validator |