![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qseq12d | Structured version Visualization version GIF version |
Description: Equality theorem for quotient set, deduction form. (Contributed by Steven Nguyen, 30-Apr-2023.) |
Ref | Expression |
---|---|
qseq12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
qseq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
qseq12d | ⊢ (𝜑 → (𝐴 / 𝐶) = (𝐵 / 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qseq12d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | qseq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
3 | qseq12 8767 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 / 𝐶) = (𝐵 / 𝐷)) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐴 / 𝐶) = (𝐵 / 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 / cqs 8708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ec 8711 df-qs 8715 |
This theorem is referenced by: prjspval 41810 |
Copyright terms: Public domain | W3C validator |