| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > qseq12d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for quotient set, deduction form. (Contributed by Steven Nguyen, 30-Apr-2023.) |
| Ref | Expression |
|---|---|
| qseq12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| qseq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| qseq12d | ⊢ (𝜑 → (𝐴 / 𝐶) = (𝐵 / 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qseq12d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | qseq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 3 | qseq12 8692 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 / 𝐶) = (𝐵 / 𝐷)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 / 𝐶) = (𝐵 / 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 / cqs 8627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ec 8630 df-qs 8634 |
| This theorem is referenced by: prjspval 42721 |
| Copyright terms: Public domain | W3C validator |