Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfqs2 Structured version   Visualization version   GIF version

Theorem dfqs2 42278
Description: Alternate definition of quotient set. (Contributed by Steven Nguyen, 7-Jun-2023.)
Assertion
Ref Expression
dfqs2 (𝐴 / 𝑅) = ran (𝑥𝐴 ↦ [𝑥]𝑅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem dfqs2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-qs 8628 . 2 (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
2 eqid 2731 . . 3 (𝑥𝐴 ↦ [𝑥]𝑅) = (𝑥𝐴 ↦ [𝑥]𝑅)
32rnmpt 5896 . 2 ran (𝑥𝐴 ↦ [𝑥]𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
41, 3eqtr4i 2757 1 (𝐴 / 𝑅) = ran (𝑥𝐴 ↦ [𝑥]𝑅)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  {cab 2709  wrex 3056  cmpt 5170  ran crn 5615  [cec 8620   / cqs 8621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-mpt 5171  df-cnv 5622  df-dm 5624  df-rn 5625  df-qs 8628
This theorem is referenced by:  qsalrel  42281
  Copyright terms: Public domain W3C validator