Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfqs2 Structured version   Visualization version   GIF version

Theorem dfqs2 42232
Description: Alternate definition of quotient set. (Contributed by Steven Nguyen, 7-Jun-2023.)
Assertion
Ref Expression
dfqs2 (𝐴 / 𝑅) = ran (𝑥𝐴 ↦ [𝑥]𝑅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem dfqs2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-qs 8680 . 2 (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
2 eqid 2730 . . 3 (𝑥𝐴 ↦ [𝑥]𝑅) = (𝑥𝐴 ↦ [𝑥]𝑅)
32rnmpt 5924 . 2 ran (𝑥𝐴 ↦ [𝑥]𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
41, 3eqtr4i 2756 1 (𝐴 / 𝑅) = ran (𝑥𝐴 ↦ [𝑥]𝑅)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  {cab 2708  wrex 3054  cmpt 5191  ran crn 5642  [cec 8672   / cqs 8673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-mpt 5192  df-cnv 5649  df-dm 5651  df-rn 5652  df-qs 8680
This theorem is referenced by:  qsalrel  42235
  Copyright terms: Public domain W3C validator