| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfqs2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of quotient set. (Contributed by Steven Nguyen, 7-Jun-2023.) |
| Ref | Expression |
|---|---|
| dfqs2 | ⊢ (𝐴 / 𝑅) = ran (𝑥 ∈ 𝐴 ↦ [𝑥]𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-qs 8628 | . 2 ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} | |
| 2 | eqid 2731 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ [𝑥]𝑅) = (𝑥 ∈ 𝐴 ↦ [𝑥]𝑅) | |
| 3 | 2 | rnmpt 5896 | . 2 ⊢ ran (𝑥 ∈ 𝐴 ↦ [𝑥]𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
| 4 | 1, 3 | eqtr4i 2757 | 1 ⊢ (𝐴 / 𝑅) = ran (𝑥 ∈ 𝐴 ↦ [𝑥]𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 {cab 2709 ∃wrex 3056 ↦ cmpt 5170 ran crn 5615 [cec 8620 / cqs 8621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-mpt 5171 df-cnv 5622 df-dm 5624 df-rn 5625 df-qs 8628 |
| This theorem is referenced by: qsalrel 42281 |
| Copyright terms: Public domain | W3C validator |