![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfqs2 | Structured version Visualization version GIF version |
Description: Alternate definition of quotient set. (Contributed by Steven Nguyen, 7-Jun-2023.) |
Ref | Expression |
---|---|
dfqs2 | ⊢ (𝐴 / 𝑅) = ran (𝑥 ∈ 𝐴 ↦ [𝑥]𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-qs 8697 | . 2 ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} | |
2 | eqid 2733 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ [𝑥]𝑅) = (𝑥 ∈ 𝐴 ↦ [𝑥]𝑅) | |
3 | 2 | rnmpt 5949 | . 2 ⊢ ran (𝑥 ∈ 𝐴 ↦ [𝑥]𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
4 | 1, 3 | eqtr4i 2764 | 1 ⊢ (𝐴 / 𝑅) = ran (𝑥 ∈ 𝐴 ↦ [𝑥]𝑅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 {cab 2710 ∃wrex 3071 ↦ cmpt 5227 ran crn 5673 [cec 8689 / cqs 8690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5295 ax-nul 5302 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5145 df-opab 5207 df-mpt 5228 df-cnv 5680 df-dm 5682 df-rn 5683 df-qs 8697 |
This theorem is referenced by: qsalrel 40975 |
Copyright terms: Public domain | W3C validator |