Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfqs2 Structured version   Visualization version   GIF version

Theorem dfqs2 42232
Description: Alternate definition of quotient set. (Contributed by Steven Nguyen, 7-Jun-2023.)
Assertion
Ref Expression
dfqs2 (𝐴 / 𝑅) = ran (𝑥𝐴 ↦ [𝑥]𝑅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem dfqs2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-qs 8769 . 2 (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
2 eqid 2740 . . 3 (𝑥𝐴 ↦ [𝑥]𝑅) = (𝑥𝐴 ↦ [𝑥]𝑅)
32rnmpt 5980 . 2 ran (𝑥𝐴 ↦ [𝑥]𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
41, 3eqtr4i 2771 1 (𝐴 / 𝑅) = ran (𝑥𝐴 ↦ [𝑥]𝑅)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  {cab 2717  wrex 3076  cmpt 5249  ran crn 5701  [cec 8761   / cqs 8762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-mpt 5250  df-cnv 5708  df-dm 5710  df-rn 5711  df-qs 8769
This theorem is referenced by:  qsalrel  42235
  Copyright terms: Public domain W3C validator