| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfqs2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of quotient set. (Contributed by Steven Nguyen, 7-Jun-2023.) |
| Ref | Expression |
|---|---|
| dfqs2 | ⊢ (𝐴 / 𝑅) = ran (𝑥 ∈ 𝐴 ↦ [𝑥]𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-qs 8631 | . 2 ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} | |
| 2 | eqid 2729 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ [𝑥]𝑅) = (𝑥 ∈ 𝐴 ↦ [𝑥]𝑅) | |
| 3 | 2 | rnmpt 5899 | . 2 ⊢ ran (𝑥 ∈ 𝐴 ↦ [𝑥]𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
| 4 | 1, 3 | eqtr4i 2755 | 1 ⊢ (𝐴 / 𝑅) = ran (𝑥 ∈ 𝐴 ↦ [𝑥]𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {cab 2707 ∃wrex 3053 ↦ cmpt 5173 ran crn 5620 [cec 8623 / cqs 8624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-mpt 5174 df-cnv 5627 df-dm 5629 df-rn 5630 df-qs 8631 |
| This theorem is referenced by: qsalrel 42213 |
| Copyright terms: Public domain | W3C validator |