| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prjspval2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of projective space. (Contributed by Steven Nguyen, 7-Jun-2023.) |
| Ref | Expression |
|---|---|
| prjspval2.0 | ⊢ 0 = (0g‘𝑉) |
| prjspval2.b | ⊢ 𝐵 = ((Base‘𝑉) ∖ { 0 }) |
| prjspval2.n | ⊢ 𝑁 = (LSpan‘𝑉) |
| Ref | Expression |
|---|---|
| prjspval2 | ⊢ (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = ∪ 𝑧 ∈ 𝐵 {((𝑁‘{𝑧}) ∖ { 0 })}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prjspval2.b | . . . 4 ⊢ 𝐵 = ((Base‘𝑉) ∖ { 0 }) | |
| 2 | prjspval2.0 | . . . . . 6 ⊢ 0 = (0g‘𝑉) | |
| 3 | 2 | sneqi 4603 | . . . . 5 ⊢ { 0 } = {(0g‘𝑉)} |
| 4 | 3 | difeq2i 4089 | . . . 4 ⊢ ((Base‘𝑉) ∖ { 0 }) = ((Base‘𝑉) ∖ {(0g‘𝑉)}) |
| 5 | 1, 4 | eqtri 2753 | . . 3 ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) |
| 6 | eqid 2730 | . . 3 ⊢ ( ·𝑠 ‘𝑉) = ( ·𝑠 ‘𝑉) | |
| 7 | eqid 2730 | . . 3 ⊢ (Scalar‘𝑉) = (Scalar‘𝑉) | |
| 8 | eqid 2730 | . . 3 ⊢ (Base‘(Scalar‘𝑉)) = (Base‘(Scalar‘𝑉)) | |
| 9 | 5, 6, 7, 8 | prjspval 42598 | . 2 ⊢ (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = (𝐵 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))})) |
| 10 | dfqs3 42233 | . . 3 ⊢ (𝐵 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))}) = ∪ 𝑧 ∈ 𝐵 {[𝑧]{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))}} | |
| 11 | 10 | a1i 11 | . 2 ⊢ (𝑉 ∈ LVec → (𝐵 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))}) = ∪ 𝑧 ∈ 𝐵 {[𝑧]{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))}}) |
| 12 | eqid 2730 | . . . . . 6 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))} | |
| 13 | prjspval2.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑉) | |
| 14 | 12, 5, 7, 6, 8, 13 | prjspeclsp 42607 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ 𝑧 ∈ 𝐵) → [𝑧]{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))} = ((𝑁‘{𝑧}) ∖ {(0g‘𝑉)})) |
| 15 | 3 | difeq2i 4089 | . . . . 5 ⊢ ((𝑁‘{𝑧}) ∖ { 0 }) = ((𝑁‘{𝑧}) ∖ {(0g‘𝑉)}) |
| 16 | 14, 15 | eqtr4di 2783 | . . . 4 ⊢ ((𝑉 ∈ LVec ∧ 𝑧 ∈ 𝐵) → [𝑧]{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))} = ((𝑁‘{𝑧}) ∖ { 0 })) |
| 17 | 16 | sneqd 4604 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ 𝑧 ∈ 𝐵) → {[𝑧]{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))}} = {((𝑁‘{𝑧}) ∖ { 0 })}) |
| 18 | 17 | iuneq2dv 4983 | . 2 ⊢ (𝑉 ∈ LVec → ∪ 𝑧 ∈ 𝐵 {[𝑧]{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))}} = ∪ 𝑧 ∈ 𝐵 {((𝑁‘{𝑧}) ∖ { 0 })}) |
| 19 | 9, 11, 18 | 3eqtrd 2769 | 1 ⊢ (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = ∪ 𝑧 ∈ 𝐵 {((𝑁‘{𝑧}) ∖ { 0 })}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 ∖ cdif 3914 {csn 4592 ∪ ciun 4958 {copab 5172 ‘cfv 6514 (class class class)co 7390 [cec 8672 / cqs 8673 Basecbs 17186 Scalarcsca 17230 ·𝑠 cvsca 17231 0gc0g 17409 LSpanclspn 20884 LVecclvec 21016 ℙ𝕣𝕠𝕛cprjsp 42596 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-ec 8676 df-qs 8680 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-sbg 18877 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-drng 20647 df-lmod 20775 df-lss 20845 df-lsp 20885 df-lvec 21017 df-prjsp 42597 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |