| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prjspval2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of projective space. (Contributed by Steven Nguyen, 7-Jun-2023.) |
| Ref | Expression |
|---|---|
| prjspval2.0 | ⊢ 0 = (0g‘𝑉) |
| prjspval2.b | ⊢ 𝐵 = ((Base‘𝑉) ∖ { 0 }) |
| prjspval2.n | ⊢ 𝑁 = (LSpan‘𝑉) |
| Ref | Expression |
|---|---|
| prjspval2 | ⊢ (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = ∪ 𝑧 ∈ 𝐵 {((𝑁‘{𝑧}) ∖ { 0 })}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prjspval2.b | . . . 4 ⊢ 𝐵 = ((Base‘𝑉) ∖ { 0 }) | |
| 2 | prjspval2.0 | . . . . . 6 ⊢ 0 = (0g‘𝑉) | |
| 3 | 2 | sneqi 4590 | . . . . 5 ⊢ { 0 } = {(0g‘𝑉)} |
| 4 | 3 | difeq2i 4076 | . . . 4 ⊢ ((Base‘𝑉) ∖ { 0 }) = ((Base‘𝑉) ∖ {(0g‘𝑉)}) |
| 5 | 1, 4 | eqtri 2752 | . . 3 ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) |
| 6 | eqid 2729 | . . 3 ⊢ ( ·𝑠 ‘𝑉) = ( ·𝑠 ‘𝑉) | |
| 7 | eqid 2729 | . . 3 ⊢ (Scalar‘𝑉) = (Scalar‘𝑉) | |
| 8 | eqid 2729 | . . 3 ⊢ (Base‘(Scalar‘𝑉)) = (Base‘(Scalar‘𝑉)) | |
| 9 | 5, 6, 7, 8 | prjspval 42576 | . 2 ⊢ (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = (𝐵 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))})) |
| 10 | dfqs3 42211 | . . 3 ⊢ (𝐵 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))}) = ∪ 𝑧 ∈ 𝐵 {[𝑧]{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))}} | |
| 11 | 10 | a1i 11 | . 2 ⊢ (𝑉 ∈ LVec → (𝐵 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))}) = ∪ 𝑧 ∈ 𝐵 {[𝑧]{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))}}) |
| 12 | eqid 2729 | . . . . . 6 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))} | |
| 13 | prjspval2.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑉) | |
| 14 | 12, 5, 7, 6, 8, 13 | prjspeclsp 42585 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ 𝑧 ∈ 𝐵) → [𝑧]{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))} = ((𝑁‘{𝑧}) ∖ {(0g‘𝑉)})) |
| 15 | 3 | difeq2i 4076 | . . . . 5 ⊢ ((𝑁‘{𝑧}) ∖ { 0 }) = ((𝑁‘{𝑧}) ∖ {(0g‘𝑉)}) |
| 16 | 14, 15 | eqtr4di 2782 | . . . 4 ⊢ ((𝑉 ∈ LVec ∧ 𝑧 ∈ 𝐵) → [𝑧]{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))} = ((𝑁‘{𝑧}) ∖ { 0 })) |
| 17 | 16 | sneqd 4591 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ 𝑧 ∈ 𝐵) → {[𝑧]{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))}} = {((𝑁‘{𝑧}) ∖ { 0 })}) |
| 18 | 17 | iuneq2dv 4969 | . 2 ⊢ (𝑉 ∈ LVec → ∪ 𝑧 ∈ 𝐵 {[𝑧]{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))}} = ∪ 𝑧 ∈ 𝐵 {((𝑁‘{𝑧}) ∖ { 0 })}) |
| 19 | 9, 11, 18 | 3eqtrd 2768 | 1 ⊢ (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = ∪ 𝑧 ∈ 𝐵 {((𝑁‘{𝑧}) ∖ { 0 })}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∖ cdif 3902 {csn 4579 ∪ ciun 4944 {copab 5157 ‘cfv 6486 (class class class)co 7353 [cec 8630 / cqs 8631 Basecbs 17138 Scalarcsca 17182 ·𝑠 cvsca 17183 0gc0g 17361 LSpanclspn 20892 LVecclvec 21024 ℙ𝕣𝕠𝕛cprjsp 42574 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-ec 8634 df-qs 8638 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-sbg 18835 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-drng 20634 df-lmod 20783 df-lss 20853 df-lsp 20893 df-lvec 21025 df-prjsp 42575 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |