Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspval2 Structured version   Visualization version   GIF version

Theorem prjspval2 42731
Description: Alternate definition of projective space. (Contributed by Steven Nguyen, 7-Jun-2023.)
Hypotheses
Ref Expression
prjspval2.0 0 = (0g𝑉)
prjspval2.b 𝐵 = ((Base‘𝑉) ∖ { 0 })
prjspval2.n 𝑁 = (LSpan‘𝑉)
Assertion
Ref Expression
prjspval2 (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = 𝑧𝐵 {((𝑁‘{𝑧}) ∖ { 0 })})
Distinct variable groups:   𝑧,𝑉   𝑧,𝐵
Allowed substitution hints:   𝑁(𝑧)   0 (𝑧)

Proof of Theorem prjspval2
Dummy variables 𝑥 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prjspval2.b . . . 4 𝐵 = ((Base‘𝑉) ∖ { 0 })
2 prjspval2.0 . . . . . 6 0 = (0g𝑉)
32sneqi 4586 . . . . 5 { 0 } = {(0g𝑉)}
43difeq2i 4072 . . . 4 ((Base‘𝑉) ∖ { 0 }) = ((Base‘𝑉) ∖ {(0g𝑉)})
51, 4eqtri 2756 . . 3 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
6 eqid 2733 . . 3 ( ·𝑠𝑉) = ( ·𝑠𝑉)
7 eqid 2733 . . 3 (Scalar‘𝑉) = (Scalar‘𝑉)
8 eqid 2733 . . 3 (Base‘(Scalar‘𝑉)) = (Base‘(Scalar‘𝑉))
95, 6, 7, 8prjspval 42721 . 2 (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}))
10 dfqs3 42356 . . 3 (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}) = 𝑧𝐵 {[𝑧]{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}}
1110a1i 11 . 2 (𝑉 ∈ LVec → (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}) = 𝑧𝐵 {[𝑧]{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}})
12 eqid 2733 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}
13 prjspval2.n . . . . . 6 𝑁 = (LSpan‘𝑉)
1412, 5, 7, 6, 8, 13prjspeclsp 42730 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑧𝐵) → [𝑧]{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))} = ((𝑁‘{𝑧}) ∖ {(0g𝑉)}))
153difeq2i 4072 . . . . 5 ((𝑁‘{𝑧}) ∖ { 0 }) = ((𝑁‘{𝑧}) ∖ {(0g𝑉)})
1614, 15eqtr4di 2786 . . . 4 ((𝑉 ∈ LVec ∧ 𝑧𝐵) → [𝑧]{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))} = ((𝑁‘{𝑧}) ∖ { 0 }))
1716sneqd 4587 . . 3 ((𝑉 ∈ LVec ∧ 𝑧𝐵) → {[𝑧]{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}} = {((𝑁‘{𝑧}) ∖ { 0 })})
1817iuneq2dv 4966 . 2 (𝑉 ∈ LVec → 𝑧𝐵 {[𝑧]{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}} = 𝑧𝐵 {((𝑁‘{𝑧}) ∖ { 0 })})
199, 11, 183eqtrd 2772 1 (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = 𝑧𝐵 {((𝑁‘{𝑧}) ∖ { 0 })})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wrex 3057  cdif 3895  {csn 4575   ciun 4941  {copab 5155  cfv 6486  (class class class)co 7352  [cec 8626   / cqs 8627  Basecbs 17122  Scalarcsca 17166   ·𝑠 cvsca 17167  0gc0g 17345  LSpanclspn 20906  LVecclvec 21038  ℙ𝕣𝕠𝕛cprjsp 42719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-ec 8630  df-qs 8634  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-sbg 18853  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-drng 20648  df-lmod 20797  df-lss 20867  df-lsp 20907  df-lvec 21039  df-prjsp 42720
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator