![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prjspval2 | Structured version Visualization version GIF version |
Description: Alternate definition of projective space. (Contributed by Steven Nguyen, 7-Jun-2023.) |
Ref | Expression |
---|---|
prjspval2.0 | ⊢ 0 = (0g‘𝑉) |
prjspval2.b | ⊢ 𝐵 = ((Base‘𝑉) ∖ { 0 }) |
prjspval2.n | ⊢ 𝑁 = (LSpan‘𝑉) |
Ref | Expression |
---|---|
prjspval2 | ⊢ (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = ∪ 𝑧 ∈ 𝐵 {((𝑁‘{𝑧}) ∖ { 0 })}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prjspval2.b | . . . 4 ⊢ 𝐵 = ((Base‘𝑉) ∖ { 0 }) | |
2 | prjspval2.0 | . . . . . 6 ⊢ 0 = (0g‘𝑉) | |
3 | 2 | sneqi 4635 | . . . . 5 ⊢ { 0 } = {(0g‘𝑉)} |
4 | 3 | difeq2i 4117 | . . . 4 ⊢ ((Base‘𝑉) ∖ { 0 }) = ((Base‘𝑉) ∖ {(0g‘𝑉)}) |
5 | 1, 4 | eqtri 2761 | . . 3 ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) |
6 | eqid 2733 | . . 3 ⊢ ( ·𝑠 ‘𝑉) = ( ·𝑠 ‘𝑉) | |
7 | eqid 2733 | . . 3 ⊢ (Scalar‘𝑉) = (Scalar‘𝑉) | |
8 | eqid 2733 | . . 3 ⊢ (Base‘(Scalar‘𝑉)) = (Base‘(Scalar‘𝑉)) | |
9 | 5, 6, 7, 8 | prjspval 41227 | . 2 ⊢ (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = (𝐵 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))})) |
10 | dfqs3 40973 | . . 3 ⊢ (𝐵 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))}) = ∪ 𝑧 ∈ 𝐵 {[𝑧]{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))}} | |
11 | 10 | a1i 11 | . 2 ⊢ (𝑉 ∈ LVec → (𝐵 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))}) = ∪ 𝑧 ∈ 𝐵 {[𝑧]{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))}}) |
12 | eqid 2733 | . . . . . 6 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))} | |
13 | prjspval2.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑉) | |
14 | 12, 5, 7, 6, 8, 13 | prjspeclsp 41236 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ 𝑧 ∈ 𝐵) → [𝑧]{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))} = ((𝑁‘{𝑧}) ∖ {(0g‘𝑉)})) |
15 | 3 | difeq2i 4117 | . . . . 5 ⊢ ((𝑁‘{𝑧}) ∖ { 0 }) = ((𝑁‘{𝑧}) ∖ {(0g‘𝑉)}) |
16 | 14, 15 | eqtr4di 2791 | . . . 4 ⊢ ((𝑉 ∈ LVec ∧ 𝑧 ∈ 𝐵) → [𝑧]{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))} = ((𝑁‘{𝑧}) ∖ { 0 })) |
17 | 16 | sneqd 4636 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ 𝑧 ∈ 𝐵) → {[𝑧]{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))}} = {((𝑁‘{𝑧}) ∖ { 0 })}) |
18 | 17 | iuneq2dv 5017 | . 2 ⊢ (𝑉 ∈ LVec → ∪ 𝑧 ∈ 𝐵 {[𝑧]{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))}} = ∪ 𝑧 ∈ 𝐵 {((𝑁‘{𝑧}) ∖ { 0 })}) |
19 | 9, 11, 18 | 3eqtrd 2777 | 1 ⊢ (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = ∪ 𝑧 ∈ 𝐵 {((𝑁‘{𝑧}) ∖ { 0 })}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∃wrex 3071 ∖ cdif 3943 {csn 4624 ∪ ciun 4993 {copab 5206 ‘cfv 6535 (class class class)co 7396 [cec 8689 / cqs 8690 Basecbs 17131 Scalarcsca 17187 ·𝑠 cvsca 17188 0gc0g 17372 LSpanclspn 20559 LVecclvec 20690 ℙ𝕣𝕠𝕛cprjsp 41225 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 ax-cnex 11153 ax-resscn 11154 ax-1cn 11155 ax-icn 11156 ax-addcl 11157 ax-addrcl 11158 ax-mulcl 11159 ax-mulrcl 11160 ax-mulcom 11161 ax-addass 11162 ax-mulass 11163 ax-distr 11164 ax-i2m1 11165 ax-1ne0 11166 ax-1rid 11167 ax-rnegex 11168 ax-rrecex 11169 ax-cnre 11170 ax-pre-lttri 11171 ax-pre-lttrn 11172 ax-pre-ltadd 11173 ax-pre-mulgt0 11174 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-int 4947 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6292 df-ord 6359 df-on 6360 df-lim 6361 df-suc 6362 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-riota 7352 df-ov 7399 df-oprab 7400 df-mpo 7401 df-om 7843 df-1st 7962 df-2nd 7963 df-tpos 8198 df-frecs 8253 df-wrecs 8284 df-recs 8358 df-rdg 8397 df-er 8691 df-ec 8693 df-qs 8697 df-en 8928 df-dom 8929 df-sdom 8930 df-pnf 11237 df-mnf 11238 df-xr 11239 df-ltxr 11240 df-le 11241 df-sub 11433 df-neg 11434 df-nn 12200 df-2 12262 df-3 12263 df-sets 17084 df-slot 17102 df-ndx 17114 df-base 17132 df-ress 17161 df-plusg 17197 df-mulr 17198 df-0g 17374 df-mgm 18548 df-sgrp 18597 df-mnd 18613 df-grp 18809 df-minusg 18810 df-sbg 18811 df-mgp 19971 df-ur 19988 df-ring 20040 df-oppr 20128 df-dvdsr 20149 df-unit 20150 df-invr 20180 df-drng 20295 df-lmod 20450 df-lss 20520 df-lsp 20560 df-lvec 20691 df-prjsp 41226 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |