Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspval2 Structured version   Visualization version   GIF version

Theorem prjspval2 41237
Description: Alternate definition of projective space. (Contributed by Steven Nguyen, 7-Jun-2023.)
Hypotheses
Ref Expression
prjspval2.0 0 = (0g𝑉)
prjspval2.b 𝐵 = ((Base‘𝑉) ∖ { 0 })
prjspval2.n 𝑁 = (LSpan‘𝑉)
Assertion
Ref Expression
prjspval2 (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = 𝑧𝐵 {((𝑁‘{𝑧}) ∖ { 0 })})
Distinct variable groups:   𝑧,𝑉   𝑧,𝐵
Allowed substitution hints:   𝑁(𝑧)   0 (𝑧)

Proof of Theorem prjspval2
Dummy variables 𝑥 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prjspval2.b . . . 4 𝐵 = ((Base‘𝑉) ∖ { 0 })
2 prjspval2.0 . . . . . 6 0 = (0g𝑉)
32sneqi 4635 . . . . 5 { 0 } = {(0g𝑉)}
43difeq2i 4117 . . . 4 ((Base‘𝑉) ∖ { 0 }) = ((Base‘𝑉) ∖ {(0g𝑉)})
51, 4eqtri 2761 . . 3 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
6 eqid 2733 . . 3 ( ·𝑠𝑉) = ( ·𝑠𝑉)
7 eqid 2733 . . 3 (Scalar‘𝑉) = (Scalar‘𝑉)
8 eqid 2733 . . 3 (Base‘(Scalar‘𝑉)) = (Base‘(Scalar‘𝑉))
95, 6, 7, 8prjspval 41227 . 2 (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}))
10 dfqs3 40973 . . 3 (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}) = 𝑧𝐵 {[𝑧]{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}}
1110a1i 11 . 2 (𝑉 ∈ LVec → (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}) = 𝑧𝐵 {[𝑧]{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}})
12 eqid 2733 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}
13 prjspval2.n . . . . . 6 𝑁 = (LSpan‘𝑉)
1412, 5, 7, 6, 8, 13prjspeclsp 41236 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑧𝐵) → [𝑧]{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))} = ((𝑁‘{𝑧}) ∖ {(0g𝑉)}))
153difeq2i 4117 . . . . 5 ((𝑁‘{𝑧}) ∖ { 0 }) = ((𝑁‘{𝑧}) ∖ {(0g𝑉)})
1614, 15eqtr4di 2791 . . . 4 ((𝑉 ∈ LVec ∧ 𝑧𝐵) → [𝑧]{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))} = ((𝑁‘{𝑧}) ∖ { 0 }))
1716sneqd 4636 . . 3 ((𝑉 ∈ LVec ∧ 𝑧𝐵) → {[𝑧]{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}} = {((𝑁‘{𝑧}) ∖ { 0 })})
1817iuneq2dv 5017 . 2 (𝑉 ∈ LVec → 𝑧𝐵 {[𝑧]{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}} = 𝑧𝐵 {((𝑁‘{𝑧}) ∖ { 0 })})
199, 11, 183eqtrd 2777 1 (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = 𝑧𝐵 {((𝑁‘{𝑧}) ∖ { 0 })})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wrex 3071  cdif 3943  {csn 4624   ciun 4993  {copab 5206  cfv 6535  (class class class)co 7396  [cec 8689   / cqs 8690  Basecbs 17131  Scalarcsca 17187   ·𝑠 cvsca 17188  0gc0g 17372  LSpanclspn 20559  LVecclvec 20690  ℙ𝕣𝕠𝕛cprjsp 41225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-int 4947  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-om 7843  df-1st 7962  df-2nd 7963  df-tpos 8198  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-er 8691  df-ec 8693  df-qs 8697  df-en 8928  df-dom 8929  df-sdom 8930  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-nn 12200  df-2 12262  df-3 12263  df-sets 17084  df-slot 17102  df-ndx 17114  df-base 17132  df-ress 17161  df-plusg 17197  df-mulr 17198  df-0g 17374  df-mgm 18548  df-sgrp 18597  df-mnd 18613  df-grp 18809  df-minusg 18810  df-sbg 18811  df-mgp 19971  df-ur 19988  df-ring 20040  df-oppr 20128  df-dvdsr 20149  df-unit 20150  df-invr 20180  df-drng 20295  df-lmod 20450  df-lss 20520  df-lsp 20560  df-lvec 20691  df-prjsp 41226
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator