Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspval2 Structured version   Visualization version   GIF version

Theorem prjspval2 42601
Description: Alternate definition of projective space. (Contributed by Steven Nguyen, 7-Jun-2023.)
Hypotheses
Ref Expression
prjspval2.0 0 = (0g𝑉)
prjspval2.b 𝐵 = ((Base‘𝑉) ∖ { 0 })
prjspval2.n 𝑁 = (LSpan‘𝑉)
Assertion
Ref Expression
prjspval2 (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = 𝑧𝐵 {((𝑁‘{𝑧}) ∖ { 0 })})
Distinct variable groups:   𝑧,𝑉   𝑧,𝐵
Allowed substitution hints:   𝑁(𝑧)   0 (𝑧)

Proof of Theorem prjspval2
Dummy variables 𝑥 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prjspval2.b . . . 4 𝐵 = ((Base‘𝑉) ∖ { 0 })
2 prjspval2.0 . . . . . 6 0 = (0g𝑉)
32sneqi 4600 . . . . 5 { 0 } = {(0g𝑉)}
43difeq2i 4086 . . . 4 ((Base‘𝑉) ∖ { 0 }) = ((Base‘𝑉) ∖ {(0g𝑉)})
51, 4eqtri 2752 . . 3 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
6 eqid 2729 . . 3 ( ·𝑠𝑉) = ( ·𝑠𝑉)
7 eqid 2729 . . 3 (Scalar‘𝑉) = (Scalar‘𝑉)
8 eqid 2729 . . 3 (Base‘(Scalar‘𝑉)) = (Base‘(Scalar‘𝑉))
95, 6, 7, 8prjspval 42591 . 2 (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}))
10 dfqs3 42226 . . 3 (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}) = 𝑧𝐵 {[𝑧]{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}}
1110a1i 11 . 2 (𝑉 ∈ LVec → (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}) = 𝑧𝐵 {[𝑧]{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}})
12 eqid 2729 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}
13 prjspval2.n . . . . . 6 𝑁 = (LSpan‘𝑉)
1412, 5, 7, 6, 8, 13prjspeclsp 42600 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑧𝐵) → [𝑧]{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))} = ((𝑁‘{𝑧}) ∖ {(0g𝑉)}))
153difeq2i 4086 . . . . 5 ((𝑁‘{𝑧}) ∖ { 0 }) = ((𝑁‘{𝑧}) ∖ {(0g𝑉)})
1614, 15eqtr4di 2782 . . . 4 ((𝑉 ∈ LVec ∧ 𝑧𝐵) → [𝑧]{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))} = ((𝑁‘{𝑧}) ∖ { 0 }))
1716sneqd 4601 . . 3 ((𝑉 ∈ LVec ∧ 𝑧𝐵) → {[𝑧]{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}} = {((𝑁‘{𝑧}) ∖ { 0 })})
1817iuneq2dv 4980 . 2 (𝑉 ∈ LVec → 𝑧𝐵 {[𝑧]{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}} = 𝑧𝐵 {((𝑁‘{𝑧}) ∖ { 0 })})
199, 11, 183eqtrd 2768 1 (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = 𝑧𝐵 {((𝑁‘{𝑧}) ∖ { 0 })})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  cdif 3911  {csn 4589   ciun 4955  {copab 5169  cfv 6511  (class class class)co 7387  [cec 8669   / cqs 8670  Basecbs 17179  Scalarcsca 17223   ·𝑠 cvsca 17224  0gc0g 17402  LSpanclspn 20877  LVecclvec 21009  ℙ𝕣𝕠𝕛cprjsp 42589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-ec 8673  df-qs 8677  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-drng 20640  df-lmod 20768  df-lss 20838  df-lsp 20878  df-lvec 21010  df-prjsp 42590
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator