| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prjspval2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of projective space. (Contributed by Steven Nguyen, 7-Jun-2023.) |
| Ref | Expression |
|---|---|
| prjspval2.0 | ⊢ 0 = (0g‘𝑉) |
| prjspval2.b | ⊢ 𝐵 = ((Base‘𝑉) ∖ { 0 }) |
| prjspval2.n | ⊢ 𝑁 = (LSpan‘𝑉) |
| Ref | Expression |
|---|---|
| prjspval2 | ⊢ (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = ∪ 𝑧 ∈ 𝐵 {((𝑁‘{𝑧}) ∖ { 0 })}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prjspval2.b | . . . 4 ⊢ 𝐵 = ((Base‘𝑉) ∖ { 0 }) | |
| 2 | prjspval2.0 | . . . . . 6 ⊢ 0 = (0g‘𝑉) | |
| 3 | 2 | sneqi 4600 | . . . . 5 ⊢ { 0 } = {(0g‘𝑉)} |
| 4 | 3 | difeq2i 4086 | . . . 4 ⊢ ((Base‘𝑉) ∖ { 0 }) = ((Base‘𝑉) ∖ {(0g‘𝑉)}) |
| 5 | 1, 4 | eqtri 2752 | . . 3 ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) |
| 6 | eqid 2729 | . . 3 ⊢ ( ·𝑠 ‘𝑉) = ( ·𝑠 ‘𝑉) | |
| 7 | eqid 2729 | . . 3 ⊢ (Scalar‘𝑉) = (Scalar‘𝑉) | |
| 8 | eqid 2729 | . . 3 ⊢ (Base‘(Scalar‘𝑉)) = (Base‘(Scalar‘𝑉)) | |
| 9 | 5, 6, 7, 8 | prjspval 42591 | . 2 ⊢ (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = (𝐵 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))})) |
| 10 | dfqs3 42226 | . . 3 ⊢ (𝐵 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))}) = ∪ 𝑧 ∈ 𝐵 {[𝑧]{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))}} | |
| 11 | 10 | a1i 11 | . 2 ⊢ (𝑉 ∈ LVec → (𝐵 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))}) = ∪ 𝑧 ∈ 𝐵 {[𝑧]{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))}}) |
| 12 | eqid 2729 | . . . . . 6 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))} | |
| 13 | prjspval2.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑉) | |
| 14 | 12, 5, 7, 6, 8, 13 | prjspeclsp 42600 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ 𝑧 ∈ 𝐵) → [𝑧]{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))} = ((𝑁‘{𝑧}) ∖ {(0g‘𝑉)})) |
| 15 | 3 | difeq2i 4086 | . . . . 5 ⊢ ((𝑁‘{𝑧}) ∖ { 0 }) = ((𝑁‘{𝑧}) ∖ {(0g‘𝑉)}) |
| 16 | 14, 15 | eqtr4di 2782 | . . . 4 ⊢ ((𝑉 ∈ LVec ∧ 𝑧 ∈ 𝐵) → [𝑧]{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))} = ((𝑁‘{𝑧}) ∖ { 0 })) |
| 17 | 16 | sneqd 4601 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ 𝑧 ∈ 𝐵) → {[𝑧]{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))}} = {((𝑁‘{𝑧}) ∖ { 0 })}) |
| 18 | 17 | iuneq2dv 4980 | . 2 ⊢ (𝑉 ∈ LVec → ∪ 𝑧 ∈ 𝐵 {[𝑧]{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))}} = ∪ 𝑧 ∈ 𝐵 {((𝑁‘{𝑧}) ∖ { 0 })}) |
| 19 | 9, 11, 18 | 3eqtrd 2768 | 1 ⊢ (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = ∪ 𝑧 ∈ 𝐵 {((𝑁‘{𝑧}) ∖ { 0 })}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∖ cdif 3911 {csn 4589 ∪ ciun 4955 {copab 5169 ‘cfv 6511 (class class class)co 7387 [cec 8669 / cqs 8670 Basecbs 17179 Scalarcsca 17223 ·𝑠 cvsca 17224 0gc0g 17402 LSpanclspn 20877 LVecclvec 21009 ℙ𝕣𝕠𝕛cprjsp 42589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-ec 8673 df-qs 8677 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-drng 20640 df-lmod 20768 df-lss 20838 df-lsp 20878 df-lvec 21010 df-prjsp 42590 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |