| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prjspval2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of projective space. (Contributed by Steven Nguyen, 7-Jun-2023.) |
| Ref | Expression |
|---|---|
| prjspval2.0 | ⊢ 0 = (0g‘𝑉) |
| prjspval2.b | ⊢ 𝐵 = ((Base‘𝑉) ∖ { 0 }) |
| prjspval2.n | ⊢ 𝑁 = (LSpan‘𝑉) |
| Ref | Expression |
|---|---|
| prjspval2 | ⊢ (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = ∪ 𝑧 ∈ 𝐵 {((𝑁‘{𝑧}) ∖ { 0 })}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prjspval2.b | . . . 4 ⊢ 𝐵 = ((Base‘𝑉) ∖ { 0 }) | |
| 2 | prjspval2.0 | . . . . . 6 ⊢ 0 = (0g‘𝑉) | |
| 3 | 2 | sneqi 4586 | . . . . 5 ⊢ { 0 } = {(0g‘𝑉)} |
| 4 | 3 | difeq2i 4072 | . . . 4 ⊢ ((Base‘𝑉) ∖ { 0 }) = ((Base‘𝑉) ∖ {(0g‘𝑉)}) |
| 5 | 1, 4 | eqtri 2756 | . . 3 ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) |
| 6 | eqid 2733 | . . 3 ⊢ ( ·𝑠 ‘𝑉) = ( ·𝑠 ‘𝑉) | |
| 7 | eqid 2733 | . . 3 ⊢ (Scalar‘𝑉) = (Scalar‘𝑉) | |
| 8 | eqid 2733 | . . 3 ⊢ (Base‘(Scalar‘𝑉)) = (Base‘(Scalar‘𝑉)) | |
| 9 | 5, 6, 7, 8 | prjspval 42721 | . 2 ⊢ (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = (𝐵 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))})) |
| 10 | dfqs3 42356 | . . 3 ⊢ (𝐵 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))}) = ∪ 𝑧 ∈ 𝐵 {[𝑧]{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))}} | |
| 11 | 10 | a1i 11 | . 2 ⊢ (𝑉 ∈ LVec → (𝐵 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))}) = ∪ 𝑧 ∈ 𝐵 {[𝑧]{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))}}) |
| 12 | eqid 2733 | . . . . . 6 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))} | |
| 13 | prjspval2.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑉) | |
| 14 | 12, 5, 7, 6, 8, 13 | prjspeclsp 42730 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ 𝑧 ∈ 𝐵) → [𝑧]{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))} = ((𝑁‘{𝑧}) ∖ {(0g‘𝑉)})) |
| 15 | 3 | difeq2i 4072 | . . . . 5 ⊢ ((𝑁‘{𝑧}) ∖ { 0 }) = ((𝑁‘{𝑧}) ∖ {(0g‘𝑉)}) |
| 16 | 14, 15 | eqtr4di 2786 | . . . 4 ⊢ ((𝑉 ∈ LVec ∧ 𝑧 ∈ 𝐵) → [𝑧]{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))} = ((𝑁‘{𝑧}) ∖ { 0 })) |
| 17 | 16 | sneqd 4587 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ 𝑧 ∈ 𝐵) → {[𝑧]{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))}} = {((𝑁‘{𝑧}) ∖ { 0 })}) |
| 18 | 17 | iuneq2dv 4966 | . 2 ⊢ (𝑉 ∈ LVec → ∪ 𝑧 ∈ 𝐵 {[𝑧]{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠 ‘𝑉)𝑦))}} = ∪ 𝑧 ∈ 𝐵 {((𝑁‘{𝑧}) ∖ { 0 })}) |
| 19 | 9, 11, 18 | 3eqtrd 2772 | 1 ⊢ (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = ∪ 𝑧 ∈ 𝐵 {((𝑁‘{𝑧}) ∖ { 0 })}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 ∖ cdif 3895 {csn 4575 ∪ ciun 4941 {copab 5155 ‘cfv 6486 (class class class)co 7352 [cec 8626 / cqs 8627 Basecbs 17122 Scalarcsca 17166 ·𝑠 cvsca 17167 0gc0g 17345 LSpanclspn 20906 LVecclvec 21038 ℙ𝕣𝕠𝕛cprjsp 42719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-ec 8630 df-qs 8634 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-minusg 18852 df-sbg 18853 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-drng 20648 df-lmod 20797 df-lss 20867 df-lsp 20907 df-lvec 21039 df-prjsp 42720 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |