Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspval2 Structured version   Visualization version   GIF version

Theorem prjspval2 39439
Description: Alternate definition of projective space. (Contributed by Steven Nguyen, 7-Jun-2023.)
Hypotheses
Ref Expression
prjspval2.0 0 = (0g𝑉)
prjspval2.b 𝐵 = ((Base‘𝑉) ∖ { 0 })
prjspval2.n 𝑁 = (LSpan‘𝑉)
Assertion
Ref Expression
prjspval2 (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = 𝑧𝐵 {((𝑁‘{𝑧}) ∖ { 0 })})
Distinct variable groups:   𝑧,𝑉   𝑧,𝐵
Allowed substitution hints:   𝑁(𝑧)   0 (𝑧)

Proof of Theorem prjspval2
Dummy variables 𝑥 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prjspval2.b . . . 4 𝐵 = ((Base‘𝑉) ∖ { 0 })
2 prjspval2.0 . . . . . 6 0 = (0g𝑉)
32sneqi 4559 . . . . 5 { 0 } = {(0g𝑉)}
43difeq2i 4080 . . . 4 ((Base‘𝑉) ∖ { 0 }) = ((Base‘𝑉) ∖ {(0g𝑉)})
51, 4eqtri 2847 . . 3 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
6 eqid 2824 . . 3 ( ·𝑠𝑉) = ( ·𝑠𝑉)
7 eqid 2824 . . 3 (Scalar‘𝑉) = (Scalar‘𝑉)
8 eqid 2824 . . 3 (Base‘(Scalar‘𝑉)) = (Base‘(Scalar‘𝑉))
95, 6, 7, 8prjspval 39429 . 2 (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}))
10 dfqs3 39274 . . 3 (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}) = 𝑧𝐵 {[𝑧]{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}}
1110a1i 11 . 2 (𝑉 ∈ LVec → (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}) = 𝑧𝐵 {[𝑧]{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}})
12 eqid 2824 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}
13 prjspval2.n . . . . . 6 𝑁 = (LSpan‘𝑉)
1412, 5, 7, 6, 8, 13prjspeclsp 39438 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑧𝐵) → [𝑧]{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))} = ((𝑁‘{𝑧}) ∖ {(0g𝑉)}))
153difeq2i 4080 . . . . 5 ((𝑁‘{𝑧}) ∖ { 0 }) = ((𝑁‘{𝑧}) ∖ {(0g𝑉)})
1614, 15syl6eqr 2877 . . . 4 ((𝑉 ∈ LVec ∧ 𝑧𝐵) → [𝑧]{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))} = ((𝑁‘{𝑧}) ∖ { 0 }))
1716sneqd 4560 . . 3 ((𝑉 ∈ LVec ∧ 𝑧𝐵) → {[𝑧]{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}} = {((𝑁‘{𝑧}) ∖ { 0 })})
1817iuneq2dv 4924 . 2 (𝑉 ∈ LVec → 𝑧𝐵 {[𝑧]{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}} = 𝑧𝐵 {((𝑁‘{𝑧}) ∖ { 0 })})
199, 11, 183eqtrd 2863 1 (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = 𝑧𝐵 {((𝑁‘{𝑧}) ∖ { 0 })})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  wrex 3133  cdif 3915  {csn 4548   ciun 4900  {copab 5109  cfv 6336  (class class class)co 7138  [cec 8270   / cqs 8271  Basecbs 16472  Scalarcsca 16557   ·𝑠 cvsca 16558  0gc0g 16702  LSpanclspn 19729  LVecclvec 19860  ℙ𝕣𝕠𝕛cprjsp 39427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-1st 7672  df-2nd 7673  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-ec 8274  df-qs 8278  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-nn 11624  df-2 11686  df-3 11687  df-ndx 16475  df-slot 16476  df-base 16478  df-sets 16479  df-ress 16480  df-plusg 16567  df-mulr 16568  df-0g 16704  df-mgm 17841  df-sgrp 17890  df-mnd 17901  df-grp 18095  df-minusg 18096  df-sbg 18097  df-mgp 19229  df-ur 19241  df-ring 19288  df-oppr 19362  df-dvdsr 19380  df-unit 19381  df-invr 19411  df-drng 19490  df-lmod 19622  df-lss 19690  df-lsp 19730  df-lvec 19861  df-prjsp 39428
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator