Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspval2 Structured version   Visualization version   GIF version

Theorem prjspval2 42636
Description: Alternate definition of projective space. (Contributed by Steven Nguyen, 7-Jun-2023.)
Hypotheses
Ref Expression
prjspval2.0 0 = (0g𝑉)
prjspval2.b 𝐵 = ((Base‘𝑉) ∖ { 0 })
prjspval2.n 𝑁 = (LSpan‘𝑉)
Assertion
Ref Expression
prjspval2 (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = 𝑧𝐵 {((𝑁‘{𝑧}) ∖ { 0 })})
Distinct variable groups:   𝑧,𝑉   𝑧,𝐵
Allowed substitution hints:   𝑁(𝑧)   0 (𝑧)

Proof of Theorem prjspval2
Dummy variables 𝑥 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prjspval2.b . . . 4 𝐵 = ((Base‘𝑉) ∖ { 0 })
2 prjspval2.0 . . . . . 6 0 = (0g𝑉)
32sneqi 4612 . . . . 5 { 0 } = {(0g𝑉)}
43difeq2i 4098 . . . 4 ((Base‘𝑉) ∖ { 0 }) = ((Base‘𝑉) ∖ {(0g𝑉)})
51, 4eqtri 2758 . . 3 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
6 eqid 2735 . . 3 ( ·𝑠𝑉) = ( ·𝑠𝑉)
7 eqid 2735 . . 3 (Scalar‘𝑉) = (Scalar‘𝑉)
8 eqid 2735 . . 3 (Base‘(Scalar‘𝑉)) = (Base‘(Scalar‘𝑉))
95, 6, 7, 8prjspval 42626 . 2 (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}))
10 dfqs3 42289 . . 3 (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}) = 𝑧𝐵 {[𝑧]{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}}
1110a1i 11 . 2 (𝑉 ∈ LVec → (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}) = 𝑧𝐵 {[𝑧]{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}})
12 eqid 2735 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}
13 prjspval2.n . . . . . 6 𝑁 = (LSpan‘𝑉)
1412, 5, 7, 6, 8, 13prjspeclsp 42635 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑧𝐵) → [𝑧]{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))} = ((𝑁‘{𝑧}) ∖ {(0g𝑉)}))
153difeq2i 4098 . . . . 5 ((𝑁‘{𝑧}) ∖ { 0 }) = ((𝑁‘{𝑧}) ∖ {(0g𝑉)})
1614, 15eqtr4di 2788 . . . 4 ((𝑉 ∈ LVec ∧ 𝑧𝐵) → [𝑧]{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))} = ((𝑁‘{𝑧}) ∖ { 0 }))
1716sneqd 4613 . . 3 ((𝑉 ∈ LVec ∧ 𝑧𝐵) → {[𝑧]{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}} = {((𝑁‘{𝑧}) ∖ { 0 })})
1817iuneq2dv 4992 . 2 (𝑉 ∈ LVec → 𝑧𝐵 {[𝑧]{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑉))𝑥 = (𝑙( ·𝑠𝑉)𝑦))}} = 𝑧𝐵 {((𝑁‘{𝑧}) ∖ { 0 })})
199, 11, 183eqtrd 2774 1 (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = 𝑧𝐵 {((𝑁‘{𝑧}) ∖ { 0 })})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wrex 3060  cdif 3923  {csn 4601   ciun 4967  {copab 5181  cfv 6531  (class class class)co 7405  [cec 8717   / cqs 8718  Basecbs 17228  Scalarcsca 17274   ·𝑠 cvsca 17275  0gc0g 17453  LSpanclspn 20928  LVecclvec 21060  ℙ𝕣𝕠𝕛cprjsp 42624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-ec 8721  df-qs 8725  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-sbg 18921  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-drng 20691  df-lmod 20819  df-lss 20889  df-lsp 20929  df-lvec 21061  df-prjsp 42625
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator