| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunsn | Structured version Visualization version GIF version | ||
| Description: Indexed union of a singleton. Compare dfiun2 4980 and rnmpt 5896. (Contributed by Steven Nguyen, 7-Jun-2023.) |
| Ref | Expression |
|---|---|
| iunsn | ⊢ ∪ 𝑥 ∈ 𝐴 {𝐵} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iun 4941 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝐵} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {𝐵}} | |
| 2 | velsn 4589 | . . . 4 ⊢ (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵) | |
| 3 | 2 | rexbii 3079 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ {𝐵} ↔ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵) |
| 4 | 3 | abbii 2798 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {𝐵}} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
| 5 | 1, 4 | eqtri 2754 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 {𝐵} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 {cab 2709 ∃wrex 3056 {csn 4573 ∪ ciun 4939 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-v 3438 df-sn 4574 df-iun 4941 |
| This theorem is referenced by: pzriprnglem11 21428 dfqs3 42279 fsetabsnop 47089 |
| Copyright terms: Public domain | W3C validator |