Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iunsn | Structured version Visualization version GIF version |
Description: Indexed union of a singleton. Compare dfiun2 4929 and rnmpt 5808. (Contributed by Steven Nguyen, 7-Jun-2023.) |
Ref | Expression |
---|---|
iunsn | ⊢ ∪ 𝑥 ∈ 𝐴 {𝐵} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iun 4893 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝐵} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {𝐵}} | |
2 | velsn 4542 | . . . 4 ⊢ (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵) | |
3 | 2 | rexbii 3162 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ {𝐵} ↔ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵) |
4 | 3 | abbii 2804 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {𝐵}} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
5 | 1, 4 | eqtri 2762 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 {𝐵} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2114 {cab 2717 ∃wrex 3055 {csn 4526 ∪ ciun 4891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2711 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2718 df-cleq 2731 df-clel 2812 df-rex 3060 df-v 3402 df-sn 4527 df-iun 4893 |
This theorem is referenced by: dfqs3 39836 fsetabsnop 44124 |
Copyright terms: Public domain | W3C validator |