| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunsn | Structured version Visualization version GIF version | ||
| Description: Indexed union of a singleton. Compare dfiun2 4999 and rnmpt 5923. (Contributed by Steven Nguyen, 7-Jun-2023.) |
| Ref | Expression |
|---|---|
| iunsn | ⊢ ∪ 𝑥 ∈ 𝐴 {𝐵} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iun 4959 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝐵} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {𝐵}} | |
| 2 | velsn 4607 | . . . 4 ⊢ (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵) | |
| 3 | 2 | rexbii 3077 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ {𝐵} ↔ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵) |
| 4 | 3 | abbii 2797 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {𝐵}} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
| 5 | 1, 4 | eqtri 2753 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 {𝐵} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2708 ∃wrex 3054 {csn 4591 ∪ ciun 4957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rex 3055 df-v 3452 df-sn 4592 df-iun 4959 |
| This theorem is referenced by: pzriprnglem11 21407 dfqs3 42221 fsetabsnop 47041 |
| Copyright terms: Public domain | W3C validator |