MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunsn Structured version   Visualization version   GIF version

Theorem iunsn 5070
Description: Indexed union of a singleton. Compare dfiun2 5037 and rnmpt 5955. (Contributed by Steven Nguyen, 7-Jun-2023.)
Assertion
Ref Expression
iunsn 𝑥𝐴 {𝐵} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem iunsn
StepHypRef Expression
1 df-iun 5000 . 2 𝑥𝐴 {𝐵} = {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ {𝐵}}
2 velsn 4645 . . . 4 (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵)
32rexbii 3092 . . 3 (∃𝑥𝐴 𝑦 ∈ {𝐵} ↔ ∃𝑥𝐴 𝑦 = 𝐵)
43abbii 2800 . 2 {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ {𝐵}} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
51, 4eqtri 2758 1 𝑥𝐴 {𝐵} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2104  {cab 2707  wrex 3068  {csn 4629   ciun 4998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-rex 3069  df-v 3474  df-sn 4630  df-iun 5000
This theorem is referenced by:  pzriprnglem11  21262  dfqs3  41368  fsetabsnop  46060
  Copyright terms: Public domain W3C validator