MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunsn Structured version   Visualization version   GIF version

Theorem iunsn 5032
Description: Indexed union of a singleton. Compare dfiun2 4999 and rnmpt 5923. (Contributed by Steven Nguyen, 7-Jun-2023.)
Assertion
Ref Expression
iunsn 𝑥𝐴 {𝐵} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem iunsn
StepHypRef Expression
1 df-iun 4959 . 2 𝑥𝐴 {𝐵} = {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ {𝐵}}
2 velsn 4607 . . . 4 (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵)
32rexbii 3077 . . 3 (∃𝑥𝐴 𝑦 ∈ {𝐵} ↔ ∃𝑥𝐴 𝑦 = 𝐵)
43abbii 2797 . 2 {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ {𝐵}} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
51, 4eqtri 2753 1 𝑥𝐴 {𝐵} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {cab 2708  wrex 3054  {csn 4591   ciun 4957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rex 3055  df-v 3452  df-sn 4592  df-iun 4959
This theorem is referenced by:  pzriprnglem11  21407  dfqs3  42221  fsetabsnop  47041
  Copyright terms: Public domain W3C validator