MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunsn Structured version   Visualization version   GIF version

Theorem iunsn 4995
Description: Indexed union of a singleton. Compare dfiun2 4963 and rnmpt 5864. (Contributed by Steven Nguyen, 7-Jun-2023.)
Assertion
Ref Expression
iunsn 𝑥𝐴 {𝐵} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem iunsn
StepHypRef Expression
1 df-iun 4926 . 2 𝑥𝐴 {𝐵} = {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ {𝐵}}
2 velsn 4577 . . . 4 (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵)
32rexbii 3181 . . 3 (∃𝑥𝐴 𝑦 ∈ {𝐵} ↔ ∃𝑥𝐴 𝑦 = 𝐵)
43abbii 2808 . 2 {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ {𝐵}} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
51, 4eqtri 2766 1 𝑥𝐴 {𝐵} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  {cab 2715  wrex 3065  {csn 4561   ciun 4924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rex 3070  df-v 3434  df-sn 4562  df-iun 4926
This theorem is referenced by:  dfqs3  40213  fsetabsnop  44544
  Copyright terms: Public domain W3C validator