MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunsn Structured version   Visualization version   GIF version

Theorem iunsn 5046
Description: Indexed union of a singleton. Compare dfiun2 5013 and rnmpt 5948. (Contributed by Steven Nguyen, 7-Jun-2023.)
Assertion
Ref Expression
iunsn 𝑥𝐴 {𝐵} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem iunsn
StepHypRef Expression
1 df-iun 4973 . 2 𝑥𝐴 {𝐵} = {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ {𝐵}}
2 velsn 4622 . . . 4 (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵)
32rexbii 3082 . . 3 (∃𝑥𝐴 𝑦 ∈ {𝐵} ↔ ∃𝑥𝐴 𝑦 = 𝐵)
43abbii 2801 . 2 {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ {𝐵}} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
51, 4eqtri 2757 1 𝑥𝐴 {𝐵} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107  {cab 2712  wrex 3059  {csn 4606   ciun 4971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rex 3060  df-v 3465  df-sn 4607  df-iun 4973
This theorem is referenced by:  pzriprnglem11  21464  dfqs3  42237  fsetabsnop  47020
  Copyright terms: Public domain W3C validator