![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunsn | Structured version Visualization version GIF version |
Description: Indexed union of a singleton. Compare dfiun2 5037 and rnmpt 5955. (Contributed by Steven Nguyen, 7-Jun-2023.) |
Ref | Expression |
---|---|
iunsn | ⊢ ∪ 𝑥 ∈ 𝐴 {𝐵} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iun 5000 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝐵} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {𝐵}} | |
2 | velsn 4645 | . . . 4 ⊢ (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵) | |
3 | 2 | rexbii 3092 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ {𝐵} ↔ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵) |
4 | 3 | abbii 2800 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {𝐵}} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
5 | 1, 4 | eqtri 2758 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 {𝐵} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 {cab 2707 ∃wrex 3068 {csn 4629 ∪ ciun 4998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rex 3069 df-v 3474 df-sn 4630 df-iun 5000 |
This theorem is referenced by: pzriprnglem11 21262 dfqs3 41368 fsetabsnop 46060 |
Copyright terms: Public domain | W3C validator |