Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iunsn | Structured version Visualization version GIF version |
Description: Indexed union of a singleton. Compare dfiun2 4959 and rnmpt 5853. (Contributed by Steven Nguyen, 7-Jun-2023.) |
Ref | Expression |
---|---|
iunsn | ⊢ ∪ 𝑥 ∈ 𝐴 {𝐵} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iun 4923 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝐵} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {𝐵}} | |
2 | velsn 4574 | . . . 4 ⊢ (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵) | |
3 | 2 | rexbii 3177 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ {𝐵} ↔ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵) |
4 | 3 | abbii 2809 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {𝐵}} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
5 | 1, 4 | eqtri 2766 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 {𝐵} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 {cab 2715 ∃wrex 3064 {csn 4558 ∪ ciun 4921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rex 3069 df-v 3424 df-sn 4559 df-iun 4923 |
This theorem is referenced by: dfqs3 40139 fsetabsnop 44431 |
Copyright terms: Public domain | W3C validator |