MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfsn2ALT Structured version   Visualization version   GIF version

Theorem dfsn2ALT 4646
Description: Alternate definition of singleton, based on the (alternate) definition of pair. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by AV, 12-Jun-2022.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
dfsn2ALT {𝐴} = {𝐴, 𝐴}

Proof of Theorem dfsn2ALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oridm 904 . . 3 ((𝑥 = 𝐴𝑥 = 𝐴) ↔ 𝑥 = 𝐴)
21abbii 2808 . 2 {𝑥 ∣ (𝑥 = 𝐴𝑥 = 𝐴)} = {𝑥𝑥 = 𝐴}
3 dfpr2 4645 . 2 {𝐴, 𝐴} = {𝑥 ∣ (𝑥 = 𝐴𝑥 = 𝐴)}
4 df-sn 4626 . 2 {𝐴} = {𝑥𝑥 = 𝐴}
52, 3, 43eqtr4ri 2775 1 {𝐴} = {𝐴, 𝐴}
Colors of variables: wff setvar class
Syntax hints:  wo 847   = wceq 1539  {cab 2713  {csn 4625  {cpr 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-v 3481  df-un 3955  df-sn 4626  df-pr 4628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator