Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfpr2 | Structured version Visualization version GIF version |
Description: Alternate definition of a pair. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.) |
Ref | Expression |
---|---|
dfpr2 | ⊢ {𝐴, 𝐵} = {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4576 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
2 | elun 4095 | . . . 4 ⊢ (𝑥 ∈ ({𝐴} ∪ {𝐵}) ↔ (𝑥 ∈ {𝐴} ∨ 𝑥 ∈ {𝐵})) | |
3 | velsn 4589 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
4 | velsn 4589 | . . . . 5 ⊢ (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵) | |
5 | 3, 4 | orbi12i 912 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∨ 𝑥 ∈ {𝐵}) ↔ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)) |
6 | 2, 5 | bitri 274 | . . 3 ⊢ (𝑥 ∈ ({𝐴} ∪ {𝐵}) ↔ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)) |
7 | 6 | abbi2i 2877 | . 2 ⊢ ({𝐴} ∪ {𝐵}) = {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)} |
8 | 1, 7 | eqtri 2764 | 1 ⊢ {𝐴, 𝐵} = {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)} |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 844 = wceq 1540 ∈ wcel 2105 {cab 2713 ∪ cun 3896 {csn 4573 {cpr 4575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-un 3903 df-sn 4574 df-pr 4576 |
This theorem is referenced by: dfsn2ALT 4593 elprg 4594 nfpr 4638 pwpw0 4760 pwsn 4844 pwsnOLD 4845 zfpair 5364 grothprimlem 10690 nb3grprlem1 28036 abpr 41345 |
Copyright terms: Public domain | W3C validator |