Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfpr2 | Structured version Visualization version GIF version |
Description: Alternate definition of a pair. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.) |
Ref | Expression |
---|---|
dfpr2 | ⊢ {𝐴, 𝐵} = {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4561 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
2 | elun 4079 | . . . 4 ⊢ (𝑥 ∈ ({𝐴} ∪ {𝐵}) ↔ (𝑥 ∈ {𝐴} ∨ 𝑥 ∈ {𝐵})) | |
3 | velsn 4574 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
4 | velsn 4574 | . . . . 5 ⊢ (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵) | |
5 | 3, 4 | orbi12i 911 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∨ 𝑥 ∈ {𝐵}) ↔ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)) |
6 | 2, 5 | bitri 274 | . . 3 ⊢ (𝑥 ∈ ({𝐴} ∪ {𝐵}) ↔ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)) |
7 | 6 | abbi2i 2878 | . 2 ⊢ ({𝐴} ∪ {𝐵}) = {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)} |
8 | 1, 7 | eqtri 2766 | 1 ⊢ {𝐴, 𝐵} = {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)} |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 843 = wceq 1539 ∈ wcel 2108 {cab 2715 ∪ cun 3881 {csn 4558 {cpr 4560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-sn 4559 df-pr 4561 |
This theorem is referenced by: dfsn2ALT 4578 elprg 4579 nfpr 4623 pwpw0 4743 pwsn 4828 pwsnOLD 4829 zfpair 5339 grothprimlem 10520 nb3grprlem1 27650 |
Copyright terms: Public domain | W3C validator |