MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfpr2 Structured version   Visualization version   GIF version

Theorem dfpr2 4653
Description: Alternate definition of a pair. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.)
Assertion
Ref Expression
dfpr2 {𝐴, 𝐵} = {𝑥 ∣ (𝑥 = 𝐴𝑥 = 𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfpr2
StepHypRef Expression
1 df-pr 4636 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
2 elun 4148 . . . 4 (𝑥 ∈ ({𝐴} ∪ {𝐵}) ↔ (𝑥 ∈ {𝐴} ∨ 𝑥 ∈ {𝐵}))
3 velsn 4649 . . . . 5 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
4 velsn 4649 . . . . 5 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
53, 4orbi12i 912 . . . 4 ((𝑥 ∈ {𝐴} ∨ 𝑥 ∈ {𝐵}) ↔ (𝑥 = 𝐴𝑥 = 𝐵))
62, 5bitri 274 . . 3 (𝑥 ∈ ({𝐴} ∪ {𝐵}) ↔ (𝑥 = 𝐴𝑥 = 𝐵))
76eqabi 2862 . 2 ({𝐴} ∪ {𝐵}) = {𝑥 ∣ (𝑥 = 𝐴𝑥 = 𝐵)}
81, 7eqtri 2754 1 {𝐴, 𝐵} = {𝑥 ∣ (𝑥 = 𝐴𝑥 = 𝐵)}
Colors of variables: wff setvar class
Syntax hints:  wo 845   = wceq 1534  wcel 2099  {cab 2703  cun 3945  {csn 4633  {cpr 4635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-v 3464  df-un 3952  df-sn 4634  df-pr 4636
This theorem is referenced by:  dfsn2ALT  4654  elprg  4655  nfpr  4699  pwpw0  4822  pwsn  4906  zfpair  5425  grothprimlem  10876  nb3grprlem1  29316  abpr  43076
  Copyright terms: Public domain W3C validator