MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfpr2 Structured version   Visualization version   GIF version

Theorem dfpr2 4580
Description: Alternate definition of a pair. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.)
Assertion
Ref Expression
dfpr2 {𝐴, 𝐵} = {𝑥 ∣ (𝑥 = 𝐴𝑥 = 𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfpr2
StepHypRef Expression
1 df-pr 4564 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
2 elun 4083 . . . 4 (𝑥 ∈ ({𝐴} ∪ {𝐵}) ↔ (𝑥 ∈ {𝐴} ∨ 𝑥 ∈ {𝐵}))
3 velsn 4577 . . . . 5 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
4 velsn 4577 . . . . 5 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
53, 4orbi12i 912 . . . 4 ((𝑥 ∈ {𝐴} ∨ 𝑥 ∈ {𝐵}) ↔ (𝑥 = 𝐴𝑥 = 𝐵))
62, 5bitri 274 . . 3 (𝑥 ∈ ({𝐴} ∪ {𝐵}) ↔ (𝑥 = 𝐴𝑥 = 𝐵))
76abbi2i 2879 . 2 ({𝐴} ∪ {𝐵}) = {𝑥 ∣ (𝑥 = 𝐴𝑥 = 𝐵)}
81, 7eqtri 2766 1 {𝐴, 𝐵} = {𝑥 ∣ (𝑥 = 𝐴𝑥 = 𝐵)}
Colors of variables: wff setvar class
Syntax hints:  wo 844   = wceq 1539  wcel 2106  {cab 2715  cun 3885  {csn 4561  {cpr 4563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-un 3892  df-sn 4562  df-pr 4564
This theorem is referenced by:  dfsn2ALT  4581  elprg  4582  nfpr  4626  pwpw0  4746  pwsn  4831  pwsnOLD  4832  zfpair  5344  grothprimlem  10589  nb3grprlem1  27747
  Copyright terms: Public domain W3C validator