MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfpr2 Structured version   Visualization version   GIF version

Theorem dfpr2 4610
Description: Alternate definition of a pair. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.)
Assertion
Ref Expression
dfpr2 {𝐴, 𝐵} = {𝑥 ∣ (𝑥 = 𝐴𝑥 = 𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfpr2
StepHypRef Expression
1 df-pr 4592 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
2 elun 4116 . . . 4 (𝑥 ∈ ({𝐴} ∪ {𝐵}) ↔ (𝑥 ∈ {𝐴} ∨ 𝑥 ∈ {𝐵}))
3 velsn 4605 . . . . 5 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
4 velsn 4605 . . . . 5 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
53, 4orbi12i 914 . . . 4 ((𝑥 ∈ {𝐴} ∨ 𝑥 ∈ {𝐵}) ↔ (𝑥 = 𝐴𝑥 = 𝐵))
62, 5bitri 275 . . 3 (𝑥 ∈ ({𝐴} ∪ {𝐵}) ↔ (𝑥 = 𝐴𝑥 = 𝐵))
76eqabi 2863 . 2 ({𝐴} ∪ {𝐵}) = {𝑥 ∣ (𝑥 = 𝐴𝑥 = 𝐵)}
81, 7eqtri 2752 1 {𝐴, 𝐵} = {𝑥 ∣ (𝑥 = 𝐴𝑥 = 𝐵)}
Colors of variables: wff setvar class
Syntax hints:  wo 847   = wceq 1540  wcel 2109  {cab 2707  cun 3912  {csn 4589  {cpr 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-un 3919  df-sn 4590  df-pr 4592
This theorem is referenced by:  dfsn2ALT  4611  elprg  4612  nfpr  4656  pwpw0  4777  pwsn  4864  zfpair  5376  grothprimlem  10786  nb3grprlem1  29307  rabsspr  32430  abpr  43398
  Copyright terms: Public domain W3C validator