MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elprg Structured version   Visualization version   GIF version

Theorem elprg 4599
Description: A member of a pair of classes is one or the other of them, and conversely as soon as it is a set. Exercise 1 of [TakeutiZaring] p. 15, generalized. (Contributed by NM, 13-Sep-1995.)
Assertion
Ref Expression
elprg (𝐴𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶)))

Proof of Theorem elprg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2735 . . 3 (𝑥 = 𝐴 → (𝑥 = 𝐵𝐴 = 𝐵))
2 eqeq1 2735 . . 3 (𝑥 = 𝐴 → (𝑥 = 𝐶𝐴 = 𝐶))
31, 2orbi12d 918 . 2 (𝑥 = 𝐴 → ((𝑥 = 𝐵𝑥 = 𝐶) ↔ (𝐴 = 𝐵𝐴 = 𝐶)))
4 dfpr2 4597 . 2 {𝐵, 𝐶} = {𝑥 ∣ (𝑥 = 𝐵𝑥 = 𝐶)}
53, 4elab2g 3636 1 (𝐴𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847   = wceq 1541  wcel 2111  {cpr 4578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3907  df-sn 4577  df-pr 4579
This theorem is referenced by:  elpri  4600  elpr  4601  elpr2g  4602  nelpr2  4606  nelpr1  4607  eldifpr  4611  eltpg  4639  ifpr  4646  prid1g  4713  ssprss  4776  preq1b  4798  prel12g  4816  ordunpr  7756  hashtpg  14389  2nsgsimpgd  20014  cnsubrg  21362  atandm  26811  1egrvtxdg0  29488  eupth2lem1  30193  nelpr  32506  eliccioo  32906  linds2eq  33341  sfprmdvdsmersenne  47633  prelrrx2b  48745
  Copyright terms: Public domain W3C validator