![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elprg | Structured version Visualization version GIF version |
Description: A member of a pair of classes is one or the other of them, and conversely as soon as it is a set. Exercise 1 of [TakeutiZaring] p. 15, generalized. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elprg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2744 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
2 | eqeq1 2744 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐶 ↔ 𝐴 = 𝐶)) | |
3 | 1, 2 | orbi12d 917 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 = 𝐵 ∨ 𝑥 = 𝐶) ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
4 | dfpr2 4668 | . 2 ⊢ {𝐵, 𝐶} = {𝑥 ∣ (𝑥 = 𝐵 ∨ 𝑥 = 𝐶)} | |
5 | 3, 4 | elab2g 3696 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∨ wo 846 = wceq 1537 ∈ wcel 2108 {cpr 4650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-sn 4649 df-pr 4651 |
This theorem is referenced by: elpri 4671 elpr 4672 elpr2g 4673 nelpr2 4675 nelpr1 4676 eldifpr 4680 eltpg 4709 ifpr 4716 prid1g 4785 ssprss 4849 preq1b 4871 prel12g 4888 ordunpr 7862 hashtpg 14534 2nsgsimpgd 20146 cnsubrg 21468 atandm 26937 1egrvtxdg0 29547 eupth2lem1 30250 nelpr 32559 eliccioo 32895 linds2eq 33374 sfprmdvdsmersenne 47477 prelrrx2b 48448 |
Copyright terms: Public domain | W3C validator |