| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elprg | Structured version Visualization version GIF version | ||
| Description: A member of a pair of classes is one or the other of them, and conversely as soon as it is a set. Exercise 1 of [TakeutiZaring] p. 15, generalized. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elprg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2733 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
| 2 | eqeq1 2733 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐶 ↔ 𝐴 = 𝐶)) | |
| 3 | 1, 2 | orbi12d 918 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 = 𝐵 ∨ 𝑥 = 𝐶) ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
| 4 | dfpr2 4610 | . 2 ⊢ {𝐵, 𝐶} = {𝑥 ∣ (𝑥 = 𝐵 ∨ 𝑥 = 𝐶)} | |
| 5 | 3, 4 | elab2g 3647 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 {cpr 4591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-sn 4590 df-pr 4592 |
| This theorem is referenced by: elpri 4613 elpr 4614 elpr2g 4615 nelpr2 4617 nelpr1 4618 eldifpr 4622 eltpg 4650 ifpr 4657 prid1g 4724 ssprss 4788 preq1b 4810 prel12g 4828 ordunpr 7801 hashtpg 14450 2nsgsimpgd 20034 cnsubrg 21344 atandm 26786 1egrvtxdg0 29439 eupth2lem1 30147 nelpr 32460 eliccioo 32851 linds2eq 33352 sfprmdvdsmersenne 47604 prelrrx2b 48703 |
| Copyright terms: Public domain | W3C validator |