MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elprg Structured version   Visualization version   GIF version

Theorem elprg 4645
Description: A member of a pair of classes is one or the other of them, and conversely as soon as it is a set. Exercise 1 of [TakeutiZaring] p. 15, generalized. (Contributed by NM, 13-Sep-1995.)
Assertion
Ref Expression
elprg (𝐴𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶)))

Proof of Theorem elprg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2731 . . 3 (𝑥 = 𝐴 → (𝑥 = 𝐵𝐴 = 𝐵))
2 eqeq1 2731 . . 3 (𝑥 = 𝐴 → (𝑥 = 𝐶𝐴 = 𝐶))
31, 2orbi12d 917 . 2 (𝑥 = 𝐴 → ((𝑥 = 𝐵𝑥 = 𝐶) ↔ (𝐴 = 𝐵𝐴 = 𝐶)))
4 dfpr2 4643 . 2 {𝐵, 𝐶} = {𝑥 ∣ (𝑥 = 𝐵𝑥 = 𝐶)}
53, 4elab2g 3667 1 (𝐴𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 846   = wceq 1534  wcel 2099  {cpr 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-v 3471  df-un 3949  df-sn 4625  df-pr 4627
This theorem is referenced by:  elpri  4646  elpr  4647  elpr2g  4648  elpr2OLD  4650  nelpr2  4651  nelpr1  4652  eldifpr  4656  eltpg  4685  ifpr  4691  prid1g  4760  ssprss  4823  preq1b  4843  prel12g  4860  ordunpr  7823  hashtpg  14470  2nsgsimpgd  20050  cnsubrg  21347  atandm  26795  1egrvtxdg0  29312  eupth2lem1  30015  nelpr  32312  eliccioo  32636  linds2eq  33036  sfprmdvdsmersenne  46866  prelrrx2b  47710
  Copyright terms: Public domain W3C validator