![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3eqtr4ri | Structured version Visualization version GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 2-Sep-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
3eqtr4i.2 | ⊢ 𝐶 = 𝐴 |
3eqtr4i.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3eqtr4ri | ⊢ 𝐷 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
2 | 3eqtr4i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 1, 2 | eqtr4i 2762 | . 2 ⊢ 𝐷 = 𝐴 |
4 | 3eqtr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
5 | 3, 4 | eqtr4i 2762 | 1 ⊢ 𝐷 = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1781 df-cleq 2723 |
This theorem is referenced by: cbvreucsf 3940 dfin3 4266 dfsymdif3 4296 dfif6 4531 dfsn2ALT 4648 qdass 4757 tpidm12 4759 uniprOLD 4927 iinvdif 5083 unidif0 5358 csbcnv 5883 dfdm4 5895 dmun 5910 resres 5994 inres 5999 resdifcom 6000 resiun1 6001 imainrect 6180 cnvcnv 6191 coundi 6246 coundir 6247 funopg 6582 csbov 7455 elrnmpores 7549 offres 7973 1st2val 8006 2nd2val 8007 mpomptsx 8053 oeoalem 8599 omopthlem1 8661 snec 8777 tcsni 9741 infmap2 10216 ackbij2lem3 10239 itunisuc 10417 axmulass 11155 divmul13i 11980 dfnn3 12231 halfpm6th 12438 numsucc 12722 decbin2 12823 uzrdgxfr 13937 hashxplem 14398 prprrab 14439 ids1 14552 s3s4 14889 s2s5 14890 s5s2 14891 fsumadd 15691 fsum2d 15722 fprodmul 15909 bpoly3 16007 bezout 16490 ressbasOLD 17185 oppchomf 17671 dfinito3 17960 dftermo3 17961 smndex1iidm 18819 symgbas 19280 oppr1 20242 opsrtoslem1 21836 m2detleiblem2 22351 txswaphmeolem 23529 cnfldnm 24516 cnrbas 24890 cnnm 24909 volres 25278 voliunlem1 25300 uniioombllem4 25336 itg11 25441 dfrelog 26311 log2ublem3 26690 bposlem8 27031 noinfbnd2 27471 addsasslem1 27726 uhgrspan1 28828 ip2i 30349 bcseqi 30641 hilnormi 30684 cmcmlem 31112 fh3i 31144 fh4i 31145 pjadjii 31195 cnvoprabOLD 32213 resf1o 32223 dp3mul10 32332 dpmul4 32348 threehalves 32349 ressplusf 32395 cycpmconjs 32586 resvsca 32715 xpinpreima 33185 cnre2csqima 33190 esum2dlem 33389 eulerpartgbij 33670 ballotth 33835 plymulx 33858 hgt750lem2 33963 elrn3 35037 itg2addnclem2 36844 dfcoss3 37588 cossid 37654 dfssr2 37673 rabdif 41339 areaquad 42268 cnvrcl0 42679 stoweidlem13 45028 wallispi2 45088 fourierdlem96 45217 fourierdlem97 45218 fourierdlem98 45219 fourierdlem99 45220 fourierdlem113 45234 fourierswlem 45245 dfafv2 46139 dfnelbr2 46280 fmtnorec2 46510 fmtno5fac 46549 setrec2 47828 |
Copyright terms: Public domain | W3C validator |