![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3eqtr4ri | Structured version Visualization version GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 2-Sep-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
3eqtr4i.2 | ⊢ 𝐶 = 𝐴 |
3eqtr4i.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3eqtr4ri | ⊢ 𝐷 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
2 | 3eqtr4i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 1, 2 | eqtr4i 2766 | . 2 ⊢ 𝐷 = 𝐴 |
4 | 3eqtr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
5 | 3, 4 | eqtr4i 2766 | 1 ⊢ 𝐷 = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 |
This theorem is referenced by: cbvreucsf 3955 dfin3 4283 dfsymdif3 4312 rabdif 4327 dfif6 4534 dfsn2ALT 4652 qdass 4758 tpidm12 4760 iinvdif 5085 unidif0 5366 csbcnv 5897 dfdm4 5909 dmun 5924 resres 6013 inres 6018 resdifcom 6019 resiun1 6020 imainrect 6203 cnvcnv 6214 coundi 6269 coundir 6270 funopg 6602 csbov 7476 elrnmpores 7571 offres 8007 1st2val 8041 2nd2val 8042 mpomptsx 8088 oeoalem 8633 omopthlem1 8696 snec 8819 tcsni 9781 infmap2 10255 ackbij2lem3 10278 itunisuc 10457 axmulass 11195 divmul13i 12026 dfnn3 12278 halfpm6th 12485 numsucc 12771 decbin2 12872 uzrdgxfr 14005 hashxplem 14469 prprrab 14509 ids1 14632 s3s4 14969 s2s5 14970 s5s2 14971 fsumadd 15773 fsum2d 15804 fprodmul 15993 bpoly3 16091 bezout 16577 ressbasOLD 17281 oppchomf 17767 dfinito3 18059 dftermo3 18060 smndex1iidm 18927 symgbas 19404 oppr1 20367 opsrtoslem1 22097 m2detleiblem2 22650 txswaphmeolem 23828 cnfldnm 24815 cnrbas 25189 cnnm 25208 volres 25577 voliunlem1 25599 uniioombllem4 25635 itg11 25740 dfrelog 26622 log2ublem3 27006 bposlem8 27350 noinfbnd2 27791 addsasslem1 28051 uhgrspan1 29335 ip2i 30857 bcseqi 31149 hilnormi 31192 cmcmlem 31620 fh3i 31652 fh4i 31653 pjadjii 31703 cnvoprabOLD 32738 resf1o 32748 dp3mul10 32865 dpmul4 32881 threehalves 32882 ressplusf 32933 cycpmconjs 33159 resvsca 33336 xpinpreima 33867 cnre2csqima 33872 esum2dlem 34073 eulerpartgbij 34354 ballotth 34519 plymulx 34542 hgt750lem2 34646 elrn3 35742 itg2addnclem2 37659 dfcoss3 38396 cossid 38462 dfssr2 38481 areaquad 43205 cnvrcl0 43615 stoweidlem13 45969 wallispi2 46029 fourierdlem96 46158 fourierdlem97 46159 fourierdlem98 46160 fourierdlem99 46161 fourierdlem113 46175 fourierswlem 46186 dfafv2 47082 dfnelbr2 47223 ceil5half3 47280 fmtnorec2 47468 fmtno5fac 47507 setrec2 48926 |
Copyright terms: Public domain | W3C validator |