| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtr4ri | Structured version Visualization version GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 2-Sep-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr4i.2 | ⊢ 𝐶 = 𝐴 |
| 3eqtr4i.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3eqtr4ri | ⊢ 𝐷 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
| 2 | 3eqtr4i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 1, 2 | eqtr4i 2757 | . 2 ⊢ 𝐷 = 𝐴 |
| 4 | 3eqtr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
| 5 | 3, 4 | eqtr4i 2757 | 1 ⊢ 𝐷 = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 |
| This theorem is referenced by: cbvreucsf 3889 dfin3 4224 dfsymdif3 4253 rabdif 4268 dfif6 4475 dfsn2ALT 4595 qdass 4703 tpidm12 4705 iinvdif 5026 unidif0 5296 csbcnv 5822 dfdm4 5834 dmun 5849 resres 5940 inres 5945 resdifcom 5946 resiun1 5947 imainrect 6128 cnvcnv 6139 coundi 6194 coundir 6195 funopg 6515 csbov 7391 elrnmpores 7484 offres 7915 1st2val 7949 2nd2val 7950 mpomptsx 7996 oeoalem 8511 omopthlem1 8574 snec 8702 tcsni 9631 infmap2 10108 ackbij2lem3 10131 itunisuc 10310 axmulass 11048 divmul13i 11882 dfnn3 12139 numsucc 12628 decbin2 12729 uzrdgxfr 13874 hashxplem 14340 prprrab 14380 ids1 14505 s3s4 14840 s2s5 14841 s5s2 14842 fsumadd 15647 fsum2d 15678 fprodmul 15867 bpoly3 15965 bezout 16454 oppchomf 17626 dfinito3 17912 dftermo3 17913 smndex1iidm 18809 symgbas 19284 oppr1 20268 opsrtoslem1 21990 m2detleiblem2 22543 txswaphmeolem 23719 cnfldnm 24693 cnrbas 25069 cnnm 25087 volres 25456 voliunlem1 25478 uniioombllem4 25514 itg11 25619 dfrelog 26501 log2ublem3 26885 bposlem8 27229 noinfbnd2 27670 addsasslem1 27946 uhgrspan1 29281 ip2i 30808 bcseqi 31100 hilnormi 31143 cmcmlem 31571 fh3i 31603 fh4i 31604 pjadjii 31654 resf1o 32713 dp3mul10 32878 dpmul4 32894 threehalves 32895 ressplusf 32944 cycpmconjs 33125 resvsca 33297 cos9thpiminplylem5 33799 xpinpreima 33919 cnre2csqima 33924 esum2dlem 34105 eulerpartgbij 34385 ballotth 34551 plymulx 34561 hgt750lem2 34665 elrn3 35806 itg2addnclem2 37722 dfsucmap3 38486 dfsucmap4 38488 dfcoss3 38526 cossid 38592 dfssr2 38601 dfblockliftfix2 38746 areaquad 43319 cnvrcl0 43728 stoweidlem13 46121 wallispi2 46181 fourierdlem96 46310 fourierdlem97 46311 fourierdlem98 46312 fourierdlem99 46313 fourierdlem113 46327 fourierswlem 46338 dfafv2 47242 dfnelbr2 47383 ceil5half3 47450 fmtnorec2 47653 fmtno5fac 47692 tposrescnv 48989 tposres3 48991 dfswapf2 49372 setrec2 49806 |
| Copyright terms: Public domain | W3C validator |