| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtr4ri | Structured version Visualization version GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 2-Sep-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr4i.2 | ⊢ 𝐶 = 𝐴 |
| 3eqtr4i.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3eqtr4ri | ⊢ 𝐷 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
| 2 | 3eqtr4i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 1, 2 | eqtr4i 2756 | . 2 ⊢ 𝐷 = 𝐴 |
| 4 | 3eqtr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
| 5 | 3, 4 | eqtr4i 2756 | 1 ⊢ 𝐷 = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 |
| This theorem is referenced by: cbvreucsf 3909 dfin3 4243 dfsymdif3 4272 rabdif 4287 dfif6 4494 dfsn2ALT 4614 qdass 4720 tpidm12 4722 iinvdif 5047 unidif0 5318 csbcnv 5850 dfdm4 5862 dmun 5877 resres 5966 inres 5971 resdifcom 5972 resiun1 5973 imainrect 6157 cnvcnv 6168 coundi 6223 coundir 6224 funopg 6553 csbov 7435 elrnmpores 7530 offres 7965 1st2val 7999 2nd2val 8000 mpomptsx 8046 oeoalem 8563 omopthlem1 8626 snec 8754 tcsni 9703 infmap2 10177 ackbij2lem3 10200 itunisuc 10379 axmulass 11117 divmul13i 11950 dfnn3 12207 numsucc 12696 decbin2 12797 uzrdgxfr 13939 hashxplem 14405 prprrab 14445 ids1 14569 s3s4 14906 s2s5 14907 s5s2 14908 fsumadd 15713 fsum2d 15744 fprodmul 15933 bpoly3 16031 bezout 16520 oppchomf 17688 dfinito3 17974 dftermo3 17975 smndex1iidm 18835 symgbas 19309 oppr1 20266 opsrtoslem1 21969 m2detleiblem2 22522 txswaphmeolem 23698 cnfldnm 24673 cnrbas 25049 cnnm 25067 volres 25436 voliunlem1 25458 uniioombllem4 25494 itg11 25599 dfrelog 26481 log2ublem3 26865 bposlem8 27209 noinfbnd2 27650 addsasslem1 27917 uhgrspan1 29237 ip2i 30764 bcseqi 31056 hilnormi 31099 cmcmlem 31527 fh3i 31559 fh4i 31560 pjadjii 31610 resf1o 32660 dp3mul10 32825 dpmul4 32841 threehalves 32842 ressplusf 32892 cycpmconjs 33120 resvsca 33311 cos9thpiminplylem5 33783 xpinpreima 33903 cnre2csqima 33908 esum2dlem 34089 eulerpartgbij 34370 ballotth 34536 plymulx 34546 hgt750lem2 34650 elrn3 35756 itg2addnclem2 37673 dfcoss3 38412 cossid 38478 dfssr2 38497 areaquad 43212 cnvrcl0 43621 stoweidlem13 46018 wallispi2 46078 fourierdlem96 46207 fourierdlem97 46208 fourierdlem98 46209 fourierdlem99 46210 fourierdlem113 46224 fourierswlem 46235 dfafv2 47137 dfnelbr2 47278 ceil5half3 47345 fmtnorec2 47548 fmtno5fac 47587 tposrescnv 48871 tposres3 48873 dfswapf2 49254 setrec2 49688 |
| Copyright terms: Public domain | W3C validator |