| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtr4ri | Structured version Visualization version GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 2-Sep-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr4i.2 | ⊢ 𝐶 = 𝐴 |
| 3eqtr4i.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3eqtr4ri | ⊢ 𝐷 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
| 2 | 3eqtr4i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 1, 2 | eqtr4i 2762 | . 2 ⊢ 𝐷 = 𝐴 |
| 4 | 3eqtr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
| 5 | 3, 4 | eqtr4i 2762 | 1 ⊢ 𝐷 = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 |
| This theorem is referenced by: cbvreucsf 3923 dfin3 4257 dfsymdif3 4286 rabdif 4301 dfif6 4508 dfsn2ALT 4628 qdass 4734 tpidm12 4736 iinvdif 5061 unidif0 5335 csbcnv 5868 dfdm4 5880 dmun 5895 resres 5984 inres 5989 resdifcom 5990 resiun1 5991 imainrect 6175 cnvcnv 6186 coundi 6241 coundir 6242 funopg 6575 csbov 7455 elrnmpores 7550 offres 7987 1st2val 8021 2nd2val 8022 mpomptsx 8068 oeoalem 8613 omopthlem1 8676 snec 8799 tcsni 9762 infmap2 10236 ackbij2lem3 10259 itunisuc 10438 axmulass 11176 divmul13i 12007 dfnn3 12259 numsucc 12753 decbin2 12854 uzrdgxfr 13990 hashxplem 14456 prprrab 14496 ids1 14620 s3s4 14957 s2s5 14958 s5s2 14959 fsumadd 15761 fsum2d 15792 fprodmul 15981 bpoly3 16079 bezout 16567 oppchomf 17737 dfinito3 18023 dftermo3 18024 smndex1iidm 18884 symgbas 19358 oppr1 20315 opsrtoslem1 22018 m2detleiblem2 22571 txswaphmeolem 23747 cnfldnm 24722 cnrbas 25098 cnnm 25117 volres 25486 voliunlem1 25508 uniioombllem4 25544 itg11 25649 dfrelog 26531 log2ublem3 26915 bposlem8 27259 noinfbnd2 27700 addsasslem1 27967 uhgrspan1 29287 ip2i 30814 bcseqi 31106 hilnormi 31149 cmcmlem 31577 fh3i 31609 fh4i 31610 pjadjii 31660 resf1o 32712 dp3mul10 32877 dpmul4 32893 threehalves 32894 ressplusf 32944 cycpmconjs 33172 resvsca 33353 cos9thpiminplylem5 33825 xpinpreima 33942 cnre2csqima 33947 esum2dlem 34128 eulerpartgbij 34409 ballotth 34575 plymulx 34585 hgt750lem2 34689 elrn3 35784 itg2addnclem2 37701 dfcoss3 38437 cossid 38503 dfssr2 38522 areaquad 43207 cnvrcl0 43616 stoweidlem13 46009 wallispi2 46069 fourierdlem96 46198 fourierdlem97 46199 fourierdlem98 46200 fourierdlem99 46201 fourierdlem113 46215 fourierswlem 46226 dfafv2 47128 dfnelbr2 47269 ceil5half3 47336 fmtnorec2 47524 fmtno5fac 47563 tposrescnv 48821 tposres3 48823 dfswapf2 49145 setrec2 49526 |
| Copyright terms: Public domain | W3C validator |