Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3eqtr4ri | Structured version Visualization version GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 2-Sep-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
3eqtr4i.2 | ⊢ 𝐶 = 𝐴 |
3eqtr4i.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3eqtr4ri | ⊢ 𝐷 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
2 | 3eqtr4i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 1, 2 | eqtr4i 2767 | . 2 ⊢ 𝐷 = 𝐴 |
4 | 3eqtr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
5 | 3, 4 | eqtr4i 2767 | 1 ⊢ 𝐷 = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1780 df-cleq 2728 |
This theorem is referenced by: cbvreucsf 3884 dfin3 4206 dfsymdif3 4236 dfif6 4468 dfsn2ALT 4585 qdass 4693 tpidm12 4695 uniprOLD 4863 iinvdif 5016 unidif0 5291 csbcnv 5805 dfdm4 5817 dmun 5832 resres 5916 inres 5921 resdifcom 5922 resiun1 5923 imainrect 6099 cnvcnv 6110 coundi 6165 coundir 6166 funopg 6497 csbov 7350 elrnmpores 7443 offres 7858 1st2val 7891 2nd2val 7892 mpomptsx 7936 oeoalem 8458 omopthlem1 8520 snec 8600 tcsni 9545 infmap2 10020 ackbij2lem3 10043 itunisuc 10221 axmulass 10959 divmul13i 11782 dfnn3 12033 halfpm6th 12240 numsucc 12523 decbin2 12624 uzrdgxfr 13733 hashxplem 14193 prprrab 14232 ids1 14347 s3s4 14691 s2s5 14692 s5s2 14693 fsumadd 15497 fsum2d 15528 fprodmul 15715 bpoly3 15813 bezout 16296 ressbasOLD 16993 oppchomf 17476 dfinito3 17765 dftermo3 17766 smndex1iidm 18585 symgbas 19023 oppr1 19921 opsrtoslem1 21307 m2detleiblem2 21822 txswaphmeolem 23000 cnfldnm 23987 cnrbas 24350 cnnm 24369 volres 24737 voliunlem1 24759 uniioombllem4 24795 itg11 24900 dfrelog 25766 log2ublem3 26143 bposlem8 26484 uhgrspan1 27715 ip2i 29235 bcseqi 29527 hilnormi 29570 cmcmlem 29998 fh3i 30030 fh4i 30031 pjadjii 30081 cnvoprabOLD 31100 resf1o 31110 dp3mul10 31217 dpmul4 31233 threehalves 31234 ressplusf 31280 cycpmconjs 31468 resvsca 31574 xpinpreima 31901 cnre2csqima 31906 esum2dlem 32105 eulerpartgbij 32384 ballotth 32549 plymulx 32572 hgt750lem2 32677 elrn3 33774 noinfbnd2 33979 itg2addnclem2 35873 dfcoss3 36582 cossid 36640 dfssr2 36659 rabdif 40226 areaquad 41085 cnvrcl0 41271 stoweidlem13 43603 wallispi2 43663 fourierdlem96 43792 fourierdlem97 43793 fourierdlem98 43794 fourierdlem99 43795 fourierdlem113 43809 fourierswlem 43820 dfafv2 44682 dfnelbr2 44823 fmtnorec2 45053 fmtno5fac 45092 setrec2 46459 |
Copyright terms: Public domain | W3C validator |