Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3eqtr4ri | Structured version Visualization version GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 2-Sep-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
3eqtr4i.2 | ⊢ 𝐶 = 𝐴 |
3eqtr4i.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3eqtr4ri | ⊢ 𝐷 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
2 | 3eqtr4i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 1, 2 | eqtr4i 2770 | . 2 ⊢ 𝐷 = 𝐴 |
4 | 3eqtr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
5 | 3, 4 | eqtr4i 2770 | 1 ⊢ 𝐷 = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-cleq 2731 |
This theorem is referenced by: cbvreucsf 3883 dfin3 4205 dfsymdif3 4235 dfif6 4467 dfsn2ALT 4586 qdass 4694 tpidm12 4696 uniprOLD 4863 iinvdif 5013 unidif0 5285 csbcnv 5789 dfdm4 5801 dmun 5816 domepOLD 5830 resres 5901 inres 5906 resdifcom 5907 resiun1 5908 imainrect 6081 cnvcnv 6092 coundi 6148 coundir 6149 funopg 6464 csbov 7311 elrnmpores 7402 offres 7812 1st2val 7845 2nd2val 7846 mpomptsx 7890 oeoalem 8403 omopthlem1 8463 snec 8543 tcsni 9484 infmap2 9958 ackbij2lem3 9981 itunisuc 10159 axmulass 10897 divmul13i 11719 dfnn3 11970 halfpm6th 12177 numsucc 12459 decbin2 12560 uzrdgxfr 13668 hashxplem 14129 prprrab 14168 ids1 14283 s3s4 14627 s2s5 14628 s5s2 14629 fsumadd 15433 fsum2d 15464 fprodmul 15651 bpoly3 15749 bezout 16232 ressbasOLD 16929 oppchomf 17412 dfinito3 17701 dftermo3 17702 smndex1iidm 18521 symgbas 18959 oppr1 19857 opsrtoslem1 21243 m2detleiblem2 21758 txswaphmeolem 22936 cnfldnm 23923 cnrbas 24286 cnnm 24305 volres 24673 voliunlem1 24695 uniioombllem4 24731 itg11 24836 dfrelog 25702 log2ublem3 26079 bposlem8 26420 uhgrspan1 27651 ip2i 29169 bcseqi 29461 hilnormi 29504 cmcmlem 29932 fh3i 29964 fh4i 29965 pjadjii 30015 cnvoprabOLD 31034 resf1o 31044 dp3mul10 31151 dpmul4 31167 threehalves 31168 ressplusf 31214 cycpmconjs 31402 resvsca 31508 xpinpreima 31835 cnre2csqima 31840 esum2dlem 32039 eulerpartgbij 32318 ballotth 32483 plymulx 32506 hgt750lem2 32611 elrn3 33708 noinfbnd2 33913 itg2addnclem2 35808 dfcoss3 36519 cossid 36577 dfssr2 36596 rabdif 40164 areaquad 41027 cnvrcl0 41186 stoweidlem13 43508 wallispi2 43568 fourierdlem96 43697 fourierdlem97 43698 fourierdlem98 43699 fourierdlem99 43700 fourierdlem113 43714 fourierswlem 43725 dfafv2 44575 dfnelbr2 44716 fmtnorec2 44947 fmtno5fac 44986 setrec2 46353 |
Copyright terms: Public domain | W3C validator |