| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtr4ri | Structured version Visualization version GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 2-Sep-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr4i.2 | ⊢ 𝐶 = 𝐴 |
| 3eqtr4i.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3eqtr4ri | ⊢ 𝐷 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
| 2 | 3eqtr4i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 1, 2 | eqtr4i 2755 | . 2 ⊢ 𝐷 = 𝐴 |
| 4 | 3eqtr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
| 5 | 3, 4 | eqtr4i 2755 | 1 ⊢ 𝐷 = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: cbvreucsf 3906 dfin3 4240 dfsymdif3 4269 rabdif 4284 dfif6 4491 dfsn2ALT 4611 qdass 4717 tpidm12 4719 iinvdif 5044 unidif0 5315 csbcnv 5847 dfdm4 5859 dmun 5874 resres 5963 inres 5968 resdifcom 5969 resiun1 5970 imainrect 6154 cnvcnv 6165 coundi 6220 coundir 6221 funopg 6550 csbov 7432 elrnmpores 7527 offres 7962 1st2val 7996 2nd2val 7997 mpomptsx 8043 oeoalem 8560 omopthlem1 8623 snec 8751 tcsni 9696 infmap2 10170 ackbij2lem3 10193 itunisuc 10372 axmulass 11110 divmul13i 11943 dfnn3 12200 numsucc 12689 decbin2 12790 uzrdgxfr 13932 hashxplem 14398 prprrab 14438 ids1 14562 s3s4 14899 s2s5 14900 s5s2 14901 fsumadd 15706 fsum2d 15737 fprodmul 15926 bpoly3 16024 bezout 16513 oppchomf 17681 dfinito3 17967 dftermo3 17968 smndex1iidm 18828 symgbas 19302 oppr1 20259 opsrtoslem1 21962 m2detleiblem2 22515 txswaphmeolem 23691 cnfldnm 24666 cnrbas 25042 cnnm 25060 volres 25429 voliunlem1 25451 uniioombllem4 25487 itg11 25592 dfrelog 26474 log2ublem3 26858 bposlem8 27202 noinfbnd2 27643 addsasslem1 27910 uhgrspan1 29230 ip2i 30757 bcseqi 31049 hilnormi 31092 cmcmlem 31520 fh3i 31552 fh4i 31553 pjadjii 31603 resf1o 32653 dp3mul10 32818 dpmul4 32834 threehalves 32835 ressplusf 32885 cycpmconjs 33113 resvsca 33304 cos9thpiminplylem5 33776 xpinpreima 33896 cnre2csqima 33901 esum2dlem 34082 eulerpartgbij 34363 ballotth 34529 plymulx 34539 hgt750lem2 34643 elrn3 35749 itg2addnclem2 37666 dfcoss3 38405 cossid 38471 dfssr2 38490 areaquad 43205 cnvrcl0 43614 stoweidlem13 46011 wallispi2 46071 fourierdlem96 46200 fourierdlem97 46201 fourierdlem98 46202 fourierdlem99 46203 fourierdlem113 46217 fourierswlem 46228 dfafv2 47133 dfnelbr2 47274 ceil5half3 47341 fmtnorec2 47544 fmtno5fac 47583 tposrescnv 48867 tposres3 48869 dfswapf2 49250 setrec2 49684 |
| Copyright terms: Public domain | W3C validator |