| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtr4ri | Structured version Visualization version GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 2-Sep-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr4i.2 | ⊢ 𝐶 = 𝐴 |
| 3eqtr4i.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3eqtr4ri | ⊢ 𝐷 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
| 2 | 3eqtr4i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 1, 2 | eqtr4i 2755 | . 2 ⊢ 𝐷 = 𝐴 |
| 4 | 3eqtr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
| 5 | 3, 4 | eqtr4i 2755 | 1 ⊢ 𝐷 = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: cbvreucsf 3895 dfin3 4228 dfsymdif3 4257 rabdif 4272 dfif6 4479 dfsn2ALT 4599 qdass 4705 tpidm12 4707 iinvdif 5029 unidif0 5299 csbcnv 5826 dfdm4 5838 dmun 5853 resres 5943 inres 5948 resdifcom 5949 resiun1 5950 imainrect 6130 cnvcnv 6141 coundi 6196 coundir 6197 funopg 6516 csbov 7394 elrnmpores 7487 offres 7918 1st2val 7952 2nd2val 7953 mpomptsx 7999 oeoalem 8514 omopthlem1 8577 snec 8705 tcsni 9639 infmap2 10111 ackbij2lem3 10134 itunisuc 10313 axmulass 11051 divmul13i 11885 dfnn3 12142 numsucc 12631 decbin2 12732 uzrdgxfr 13874 hashxplem 14340 prprrab 14380 ids1 14504 s3s4 14840 s2s5 14841 s5s2 14842 fsumadd 15647 fsum2d 15678 fprodmul 15867 bpoly3 15965 bezout 16454 oppchomf 17626 dfinito3 17912 dftermo3 17913 smndex1iidm 18775 symgbas 19251 oppr1 20235 opsrtoslem1 21960 m2detleiblem2 22513 txswaphmeolem 23689 cnfldnm 24664 cnrbas 25040 cnnm 25058 volres 25427 voliunlem1 25449 uniioombllem4 25485 itg11 25590 dfrelog 26472 log2ublem3 26856 bposlem8 27200 noinfbnd2 27641 addsasslem1 27915 uhgrspan1 29248 ip2i 30772 bcseqi 31064 hilnormi 31107 cmcmlem 31535 fh3i 31567 fh4i 31568 pjadjii 31618 resf1o 32673 dp3mul10 32838 dpmul4 32854 threehalves 32855 ressplusf 32905 cycpmconjs 33098 resvsca 33270 cos9thpiminplylem5 33753 xpinpreima 33873 cnre2csqima 33878 esum2dlem 34059 eulerpartgbij 34340 ballotth 34506 plymulx 34516 hgt750lem2 34620 elrn3 35739 itg2addnclem2 37656 dfcoss3 38395 cossid 38461 dfssr2 38480 areaquad 43193 cnvrcl0 43602 stoweidlem13 45998 wallispi2 46058 fourierdlem96 46187 fourierdlem97 46188 fourierdlem98 46189 fourierdlem99 46190 fourierdlem113 46204 fourierswlem 46215 dfafv2 47120 dfnelbr2 47261 ceil5half3 47328 fmtnorec2 47531 fmtno5fac 47570 tposrescnv 48867 tposres3 48869 dfswapf2 49250 setrec2 49684 |
| Copyright terms: Public domain | W3C validator |