| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtr4ri | Structured version Visualization version GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 2-Sep-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr4i.2 | ⊢ 𝐶 = 𝐴 |
| 3eqtr4i.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3eqtr4ri | ⊢ 𝐷 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
| 2 | 3eqtr4i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 1, 2 | eqtr4i 2755 | . 2 ⊢ 𝐷 = 𝐴 |
| 4 | 3eqtr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
| 5 | 3, 4 | eqtr4i 2755 | 1 ⊢ 𝐷 = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: cbvreucsf 3903 dfin3 4236 dfsymdif3 4265 rabdif 4280 dfif6 4487 dfsn2ALT 4607 qdass 4713 tpidm12 4715 iinvdif 5039 unidif0 5310 csbcnv 5837 dfdm4 5849 dmun 5864 resres 5952 inres 5957 resdifcom 5958 resiun1 5959 imainrect 6142 cnvcnv 6153 coundi 6208 coundir 6209 funopg 6534 csbov 7414 elrnmpores 7507 offres 7941 1st2val 7975 2nd2val 7976 mpomptsx 8022 oeoalem 8537 omopthlem1 8600 snec 8728 tcsni 9672 infmap2 10146 ackbij2lem3 10169 itunisuc 10348 axmulass 11086 divmul13i 11919 dfnn3 12176 numsucc 12665 decbin2 12766 uzrdgxfr 13908 hashxplem 14374 prprrab 14414 ids1 14538 s3s4 14875 s2s5 14876 s5s2 14877 fsumadd 15682 fsum2d 15713 fprodmul 15902 bpoly3 16000 bezout 16489 oppchomf 17661 dfinito3 17947 dftermo3 17948 smndex1iidm 18810 symgbas 19286 oppr1 20270 opsrtoslem1 21995 m2detleiblem2 22548 txswaphmeolem 23724 cnfldnm 24699 cnrbas 25075 cnnm 25093 volres 25462 voliunlem1 25484 uniioombllem4 25520 itg11 25625 dfrelog 26507 log2ublem3 26891 bposlem8 27235 noinfbnd2 27676 addsasslem1 27950 uhgrspan1 29283 ip2i 30807 bcseqi 31099 hilnormi 31142 cmcmlem 31570 fh3i 31602 fh4i 31603 pjadjii 31653 resf1o 32703 dp3mul10 32868 dpmul4 32884 threehalves 32885 ressplusf 32935 cycpmconjs 33128 resvsca 33297 cos9thpiminplylem5 33769 xpinpreima 33889 cnre2csqima 33894 esum2dlem 34075 eulerpartgbij 34356 ballotth 34522 plymulx 34532 hgt750lem2 34636 elrn3 35742 itg2addnclem2 37659 dfcoss3 38398 cossid 38464 dfssr2 38483 areaquad 43198 cnvrcl0 43607 stoweidlem13 46004 wallispi2 46064 fourierdlem96 46193 fourierdlem97 46194 fourierdlem98 46195 fourierdlem99 46196 fourierdlem113 46210 fourierswlem 46221 dfafv2 47126 dfnelbr2 47267 ceil5half3 47334 fmtnorec2 47537 fmtno5fac 47576 tposrescnv 48860 tposres3 48862 dfswapf2 49243 setrec2 49677 |
| Copyright terms: Public domain | W3C validator |