| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtr4ri | Structured version Visualization version GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 2-Sep-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr4i.2 | ⊢ 𝐶 = 𝐴 |
| 3eqtr4i.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3eqtr4ri | ⊢ 𝐷 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
| 2 | 3eqtr4i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 1, 2 | eqtr4i 2755 | . 2 ⊢ 𝐷 = 𝐴 |
| 4 | 3eqtr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
| 5 | 3, 4 | eqtr4i 2755 | 1 ⊢ 𝐷 = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: cbvreucsf 3903 dfin3 4236 dfsymdif3 4265 rabdif 4280 dfif6 4487 dfsn2ALT 4607 qdass 4713 tpidm12 4715 iinvdif 5039 unidif0 5310 csbcnv 5837 dfdm4 5849 dmun 5864 resres 5952 inres 5957 resdifcom 5958 resiun1 5959 imainrect 6142 cnvcnv 6153 coundi 6208 coundir 6209 funopg 6534 csbov 7414 elrnmpores 7507 offres 7941 1st2val 7975 2nd2val 7976 mpomptsx 8022 oeoalem 8537 omopthlem1 8600 snec 8728 tcsni 9672 infmap2 10146 ackbij2lem3 10169 itunisuc 10348 axmulass 11086 divmul13i 11919 dfnn3 12176 numsucc 12665 decbin2 12766 uzrdgxfr 13908 hashxplem 14374 prprrab 14414 ids1 14538 s3s4 14875 s2s5 14876 s5s2 14877 fsumadd 15682 fsum2d 15713 fprodmul 15902 bpoly3 16000 bezout 16489 oppchomf 17657 dfinito3 17943 dftermo3 17944 smndex1iidm 18804 symgbas 19278 oppr1 20235 opsrtoslem1 21938 m2detleiblem2 22491 txswaphmeolem 23667 cnfldnm 24642 cnrbas 25018 cnnm 25036 volres 25405 voliunlem1 25427 uniioombllem4 25463 itg11 25568 dfrelog 26450 log2ublem3 26834 bposlem8 27178 noinfbnd2 27619 addsasslem1 27886 uhgrspan1 29206 ip2i 30730 bcseqi 31022 hilnormi 31065 cmcmlem 31493 fh3i 31525 fh4i 31526 pjadjii 31576 resf1o 32626 dp3mul10 32791 dpmul4 32807 threehalves 32808 ressplusf 32858 cycpmconjs 33086 resvsca 33277 cos9thpiminplylem5 33749 xpinpreima 33869 cnre2csqima 33874 esum2dlem 34055 eulerpartgbij 34336 ballotth 34502 plymulx 34512 hgt750lem2 34616 elrn3 35722 itg2addnclem2 37639 dfcoss3 38378 cossid 38444 dfssr2 38463 areaquad 43178 cnvrcl0 43587 stoweidlem13 45984 wallispi2 46044 fourierdlem96 46173 fourierdlem97 46174 fourierdlem98 46175 fourierdlem99 46176 fourierdlem113 46190 fourierswlem 46201 dfafv2 47106 dfnelbr2 47247 ceil5half3 47314 fmtnorec2 47517 fmtno5fac 47556 tposrescnv 48840 tposres3 48842 dfswapf2 49223 setrec2 49657 |
| Copyright terms: Public domain | W3C validator |