![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3eqtr4ri | Structured version Visualization version GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 2-Sep-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
3eqtr4i.2 | ⊢ 𝐶 = 𝐴 |
3eqtr4i.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3eqtr4ri | ⊢ 𝐷 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
2 | 3eqtr4i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 1, 2 | eqtr4i 2771 | . 2 ⊢ 𝐷 = 𝐴 |
4 | 3eqtr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
5 | 3, 4 | eqtr4i 2771 | 1 ⊢ 𝐷 = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 |
This theorem is referenced by: cbvreucsf 3968 dfin3 4296 dfsymdif3 4325 rabdif 4340 dfif6 4551 dfsn2ALT 4669 qdass 4778 tpidm12 4780 iinvdif 5103 unidif0 5378 csbcnv 5908 dfdm4 5920 dmun 5935 resres 6022 inres 6027 resdifcom 6028 resiun1 6029 imainrect 6212 cnvcnv 6223 coundi 6278 coundir 6279 funopg 6612 csbov 7493 elrnmpores 7588 offres 8024 1st2val 8058 2nd2val 8059 mpomptsx 8105 oeoalem 8652 omopthlem1 8715 snec 8838 tcsni 9812 infmap2 10286 ackbij2lem3 10309 itunisuc 10488 axmulass 11226 divmul13i 12055 dfnn3 12307 halfpm6th 12514 numsucc 12798 decbin2 12899 uzrdgxfr 14018 hashxplem 14482 prprrab 14522 ids1 14645 s3s4 14982 s2s5 14983 s5s2 14984 fsumadd 15788 fsum2d 15819 fprodmul 16008 bpoly3 16106 bezout 16590 ressbasOLD 17294 oppchomf 17780 dfinito3 18072 dftermo3 18073 smndex1iidm 18936 symgbas 19413 oppr1 20376 opsrtoslem1 22102 m2detleiblem2 22655 txswaphmeolem 23833 cnfldnm 24820 cnrbas 25194 cnnm 25213 volres 25582 voliunlem1 25604 uniioombllem4 25640 itg11 25745 dfrelog 26625 log2ublem3 27009 bposlem8 27353 noinfbnd2 27794 addsasslem1 28054 uhgrspan1 29338 ip2i 30860 bcseqi 31152 hilnormi 31195 cmcmlem 31623 fh3i 31655 fh4i 31656 pjadjii 31706 cnvoprabOLD 32734 resf1o 32744 dp3mul10 32862 dpmul4 32878 threehalves 32879 ressplusf 32930 cycpmconjs 33149 resvsca 33321 xpinpreima 33852 cnre2csqima 33857 esum2dlem 34056 eulerpartgbij 34337 ballotth 34502 plymulx 34525 hgt750lem2 34629 elrn3 35724 itg2addnclem2 37632 dfcoss3 38370 cossid 38436 dfssr2 38455 areaquad 43177 cnvrcl0 43587 stoweidlem13 45934 wallispi2 45994 fourierdlem96 46123 fourierdlem97 46124 fourierdlem98 46125 fourierdlem99 46126 fourierdlem113 46140 fourierswlem 46151 dfafv2 47047 dfnelbr2 47188 fmtnorec2 47417 fmtno5fac 47456 setrec2 48787 |
Copyright terms: Public domain | W3C validator |