![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3eqtr4ri | Structured version Visualization version GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 2-Sep-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
3eqtr4i.2 | ⊢ 𝐶 = 𝐴 |
3eqtr4i.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3eqtr4ri | ⊢ 𝐷 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
2 | 3eqtr4i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 1, 2 | eqtr4i 2761 | . 2 ⊢ 𝐷 = 𝐴 |
4 | 3eqtr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
5 | 3, 4 | eqtr4i 2761 | 1 ⊢ 𝐷 = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-cleq 2722 |
This theorem is referenced by: cbvreucsf 3939 dfin3 4265 dfsymdif3 4295 dfif6 4530 dfsn2ALT 4647 qdass 4756 tpidm12 4758 uniprOLD 4926 iinvdif 5082 unidif0 5357 csbcnv 5882 dfdm4 5894 dmun 5909 resres 5993 inres 5998 resdifcom 5999 resiun1 6000 imainrect 6179 cnvcnv 6190 coundi 6245 coundir 6246 funopg 6581 csbov 7454 elrnmpores 7548 offres 7972 1st2val 8005 2nd2val 8006 mpomptsx 8052 oeoalem 8598 omopthlem1 8660 snec 8776 tcsni 9740 infmap2 10215 ackbij2lem3 10238 itunisuc 10416 axmulass 11154 divmul13i 11979 dfnn3 12230 halfpm6th 12437 numsucc 12721 decbin2 12822 uzrdgxfr 13936 hashxplem 14397 prprrab 14438 ids1 14551 s3s4 14888 s2s5 14889 s5s2 14890 fsumadd 15690 fsum2d 15721 fprodmul 15908 bpoly3 16006 bezout 16489 ressbasOLD 17184 oppchomf 17670 dfinito3 17959 dftermo3 17960 smndex1iidm 18818 symgbas 19279 oppr1 20241 opsrtoslem1 21835 m2detleiblem2 22350 txswaphmeolem 23528 cnfldnm 24515 cnrbas 24889 cnnm 24908 volres 25277 voliunlem1 25299 uniioombllem4 25335 itg11 25440 dfrelog 26310 log2ublem3 26689 bposlem8 27030 noinfbnd2 27470 addsasslem1 27725 uhgrspan1 28827 ip2i 30348 bcseqi 30640 hilnormi 30683 cmcmlem 31111 fh3i 31143 fh4i 31144 pjadjii 31194 cnvoprabOLD 32212 resf1o 32222 dp3mul10 32331 dpmul4 32347 threehalves 32348 ressplusf 32394 cycpmconjs 32585 resvsca 32714 xpinpreima 33184 cnre2csqima 33189 esum2dlem 33388 eulerpartgbij 33669 ballotth 33834 plymulx 33857 hgt750lem2 33962 elrn3 35036 itg2addnclem2 36843 dfcoss3 37587 cossid 37653 dfssr2 37672 rabdif 41338 areaquad 42267 cnvrcl0 42678 stoweidlem13 45027 wallispi2 45087 fourierdlem96 45216 fourierdlem97 45217 fourierdlem98 45218 fourierdlem99 45219 fourierdlem113 45233 fourierswlem 45244 dfafv2 46138 dfnelbr2 46279 fmtnorec2 46509 fmtno5fac 46548 setrec2 47827 |
Copyright terms: Public domain | W3C validator |