| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfun3 | Structured version Visualization version GIF version | ||
| Description: Union defined in terms of intersection (De Morgan's law). Definition of union in [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.) |
| Ref | Expression |
|---|---|
| dfun3 | ⊢ (𝐴 ∪ 𝐵) = (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfun2 4245 | . 2 ⊢ (𝐴 ∪ 𝐵) = (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) | |
| 2 | dfin2 4246 | . . . 4 ⊢ ((V ∖ 𝐴) ∩ (V ∖ 𝐵)) = ((V ∖ 𝐴) ∖ (V ∖ (V ∖ 𝐵))) | |
| 3 | ddif 4116 | . . . . 5 ⊢ (V ∖ (V ∖ 𝐵)) = 𝐵 | |
| 4 | 3 | difeq2i 4098 | . . . 4 ⊢ ((V ∖ 𝐴) ∖ (V ∖ (V ∖ 𝐵))) = ((V ∖ 𝐴) ∖ 𝐵) |
| 5 | 2, 4 | eqtr2i 2759 | . . 3 ⊢ ((V ∖ 𝐴) ∖ 𝐵) = ((V ∖ 𝐴) ∩ (V ∖ 𝐵)) |
| 6 | 5 | difeq2i 4098 | . 2 ⊢ (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) = (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵))) |
| 7 | 1, 6 | eqtri 2758 | 1 ⊢ (𝐴 ∪ 𝐵) = (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3459 ∖ cdif 3923 ∪ cun 3924 ∩ cin 3925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 |
| This theorem is referenced by: difundi 4265 unvdif 4450 |
| Copyright terms: Public domain | W3C validator |