![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfun3 | Structured version Visualization version GIF version |
Description: Union defined in terms of intersection (De Morgan's law). Definition of union in [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
dfun3 | ⊢ (𝐴 ∪ 𝐵) = (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfun2 4008 | . 2 ⊢ (𝐴 ∪ 𝐵) = (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) | |
2 | dfin2 4009 | . . . 4 ⊢ ((V ∖ 𝐴) ∩ (V ∖ 𝐵)) = ((V ∖ 𝐴) ∖ (V ∖ (V ∖ 𝐵))) | |
3 | ddif 3893 | . . . . 5 ⊢ (V ∖ (V ∖ 𝐵)) = 𝐵 | |
4 | 3 | difeq2i 3876 | . . . 4 ⊢ ((V ∖ 𝐴) ∖ (V ∖ (V ∖ 𝐵))) = ((V ∖ 𝐴) ∖ 𝐵) |
5 | 2, 4 | eqtr2i 2794 | . . 3 ⊢ ((V ∖ 𝐴) ∖ 𝐵) = ((V ∖ 𝐴) ∩ (V ∖ 𝐵)) |
6 | 5 | difeq2i 3876 | . 2 ⊢ (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) = (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵))) |
7 | 1, 6 | eqtri 2793 | 1 ⊢ (𝐴 ∪ 𝐵) = (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 Vcvv 3351 ∖ cdif 3720 ∪ cun 3721 ∩ cin 3722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 |
This theorem is referenced by: difundi 4028 unvdif 4185 |
Copyright terms: Public domain | W3C validator |