Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfun3 Structured version   Visualization version   GIF version

Theorem dfun3 4097
 Description: Union defined in terms of intersection (De Morgan's law). Definition of union in [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
dfun3 (𝐴𝐵) = (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵)))

Proof of Theorem dfun3
StepHypRef Expression
1 dfun2 4091 . 2 (𝐴𝐵) = (V ∖ ((V ∖ 𝐴) ∖ 𝐵))
2 dfin2 4092 . . . 4 ((V ∖ 𝐴) ∩ (V ∖ 𝐵)) = ((V ∖ 𝐴) ∖ (V ∖ (V ∖ 𝐵)))
3 ddif 3971 . . . . 5 (V ∖ (V ∖ 𝐵)) = 𝐵
43difeq2i 3954 . . . 4 ((V ∖ 𝐴) ∖ (V ∖ (V ∖ 𝐵))) = ((V ∖ 𝐴) ∖ 𝐵)
52, 4eqtr2i 2850 . . 3 ((V ∖ 𝐴) ∖ 𝐵) = ((V ∖ 𝐴) ∩ (V ∖ 𝐵))
65difeq2i 3954 . 2 (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) = (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵)))
71, 6eqtri 2849 1 (𝐴𝐵) = (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵)))
 Colors of variables: wff setvar class Syntax hints:   = wceq 1656  Vcvv 3414   ∖ cdif 3795   ∪ cun 3796   ∩ cin 3797 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-ext 2803 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rab 3126  df-v 3416  df-dif 3801  df-un 3803  df-in 3805 This theorem is referenced by:  difundi  4111  unvdif  4267
 Copyright terms: Public domain W3C validator