MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfun3 Structured version   Visualization version   GIF version

Theorem dfun3 4230
Description: Union defined in terms of intersection (De Morgan's law). Definition of union in [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
dfun3 (𝐴𝐵) = (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵)))

Proof of Theorem dfun3
StepHypRef Expression
1 dfun2 4224 . 2 (𝐴𝐵) = (V ∖ ((V ∖ 𝐴) ∖ 𝐵))
2 dfin2 4225 . . . 4 ((V ∖ 𝐴) ∩ (V ∖ 𝐵)) = ((V ∖ 𝐴) ∖ (V ∖ (V ∖ 𝐵)))
3 ddif 4101 . . . . 5 (V ∖ (V ∖ 𝐵)) = 𝐵
43difeq2i 4084 . . . 4 ((V ∖ 𝐴) ∖ (V ∖ (V ∖ 𝐵))) = ((V ∖ 𝐴) ∖ 𝐵)
52, 4eqtr2i 2766 . . 3 ((V ∖ 𝐴) ∖ 𝐵) = ((V ∖ 𝐴) ∩ (V ∖ 𝐵))
65difeq2i 4084 . 2 (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) = (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵)))
71, 6eqtri 2765 1 (𝐴𝐵) = (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  Vcvv 3448  cdif 3912  cun 3913  cin 3914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922
This theorem is referenced by:  difundi  4244  unvdif  4439
  Copyright terms: Public domain W3C validator