MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfun3 Structured version   Visualization version   GIF version

Theorem dfun3 4235
Description: Union defined in terms of intersection (De Morgan's law). Definition of union in [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
dfun3 (𝐴𝐵) = (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵)))

Proof of Theorem dfun3
StepHypRef Expression
1 dfun2 4229 . 2 (𝐴𝐵) = (V ∖ ((V ∖ 𝐴) ∖ 𝐵))
2 dfin2 4230 . . . 4 ((V ∖ 𝐴) ∩ (V ∖ 𝐵)) = ((V ∖ 𝐴) ∖ (V ∖ (V ∖ 𝐵)))
3 ddif 4100 . . . . 5 (V ∖ (V ∖ 𝐵)) = 𝐵
43difeq2i 4082 . . . 4 ((V ∖ 𝐴) ∖ (V ∖ (V ∖ 𝐵))) = ((V ∖ 𝐴) ∖ 𝐵)
52, 4eqtr2i 2753 . . 3 ((V ∖ 𝐴) ∖ 𝐵) = ((V ∖ 𝐴) ∩ (V ∖ 𝐵))
65difeq2i 4082 . 2 (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) = (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵)))
71, 6eqtri 2752 1 (𝐴𝐵) = (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3444  cdif 3908  cun 3909  cin 3910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918
This theorem is referenced by:  difundi  4249  unvdif  4434
  Copyright terms: Public domain W3C validator