| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfun3 | Structured version Visualization version GIF version | ||
| Description: Union defined in terms of intersection (De Morgan's law). Definition of union in [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.) |
| Ref | Expression |
|---|---|
| dfun3 | ⊢ (𝐴 ∪ 𝐵) = (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfun2 4217 | . 2 ⊢ (𝐴 ∪ 𝐵) = (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) | |
| 2 | dfin2 4218 | . . . 4 ⊢ ((V ∖ 𝐴) ∩ (V ∖ 𝐵)) = ((V ∖ 𝐴) ∖ (V ∖ (V ∖ 𝐵))) | |
| 3 | ddif 4088 | . . . . 5 ⊢ (V ∖ (V ∖ 𝐵)) = 𝐵 | |
| 4 | 3 | difeq2i 4070 | . . . 4 ⊢ ((V ∖ 𝐴) ∖ (V ∖ (V ∖ 𝐵))) = ((V ∖ 𝐴) ∖ 𝐵) |
| 5 | 2, 4 | eqtr2i 2755 | . . 3 ⊢ ((V ∖ 𝐴) ∖ 𝐵) = ((V ∖ 𝐴) ∩ (V ∖ 𝐵)) |
| 6 | 5 | difeq2i 4070 | . 2 ⊢ (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) = (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵))) |
| 7 | 1, 6 | eqtri 2754 | 1 ⊢ (𝐴 ∪ 𝐵) = (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3436 ∖ cdif 3894 ∪ cun 3895 ∩ cin 3896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 |
| This theorem is referenced by: difundi 4237 unvdif 4422 |
| Copyright terms: Public domain | W3C validator |