Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfsucmap4 Structured version   Visualization version   GIF version

Theorem dfsucmap4 38488
Description: Alternate definition of the successor map. (Contributed by Peter Mazsa, 28-Jan-2026.)
Assertion
Ref Expression
dfsucmap4 SucMap = (𝑚 ∈ V ↦ suc 𝑚)

Proof of Theorem dfsucmap4
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 eqcom 2738 . . 3 (𝑛 = suc 𝑚 ↔ suc 𝑚 = 𝑛)
21opabbii 5156 . 2 {⟨𝑚, 𝑛⟩ ∣ 𝑛 = suc 𝑚} = {⟨𝑚, 𝑛⟩ ∣ suc 𝑚 = 𝑛}
3 mptv 5195 . 2 (𝑚 ∈ V ↦ suc 𝑚) = {⟨𝑚, 𝑛⟩ ∣ 𝑛 = suc 𝑚}
4 df-sucmap 38485 . 2 SucMap = {⟨𝑚, 𝑛⟩ ∣ suc 𝑚 = 𝑛}
52, 3, 43eqtr4ri 2765 1 SucMap = (𝑚 ∈ V ↦ suc 𝑚)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  Vcvv 3436  {copab 5151  cmpt 5170  suc csuc 6308   SucMap csucmap 38227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-opab 5152  df-mpt 5171  df-sucmap 38485
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator