| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfsucmap4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the successor map. (Contributed by Peter Mazsa, 28-Jan-2026.) |
| Ref | Expression |
|---|---|
| dfsucmap4 | ⊢ SucMap = (𝑚 ∈ V ↦ suc 𝑚) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2738 | . . 3 ⊢ (𝑛 = suc 𝑚 ↔ suc 𝑚 = 𝑛) | |
| 2 | 1 | opabbii 5156 | . 2 ⊢ {〈𝑚, 𝑛〉 ∣ 𝑛 = suc 𝑚} = {〈𝑚, 𝑛〉 ∣ suc 𝑚 = 𝑛} |
| 3 | mptv 5195 | . 2 ⊢ (𝑚 ∈ V ↦ suc 𝑚) = {〈𝑚, 𝑛〉 ∣ 𝑛 = suc 𝑚} | |
| 4 | df-sucmap 38485 | . 2 ⊢ SucMap = {〈𝑚, 𝑛〉 ∣ suc 𝑚 = 𝑛} | |
| 5 | 2, 3, 4 | 3eqtr4ri 2765 | 1 ⊢ SucMap = (𝑚 ∈ V ↦ suc 𝑚) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3436 {copab 5151 ↦ cmpt 5170 suc csuc 6308 SucMap csucmap 38227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-opab 5152 df-mpt 5171 df-sucmap 38485 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |