| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brsucmap | Structured version Visualization version GIF version | ||
| Description: Binary relation form of the successor map, general version. (Contributed by Peter Mazsa, 6-Jan-2026.) |
| Ref | Expression |
|---|---|
| brsucmap | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → (𝑀 SucMap 𝑁 ↔ suc 𝑀 = 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suceq 6374 | . . 3 ⊢ (𝑚 = 𝑀 → suc 𝑚 = suc 𝑀) | |
| 2 | id 22 | . . 3 ⊢ (𝑛 = 𝑁 → 𝑛 = 𝑁) | |
| 3 | 1, 2 | eqeqan12d 2745 | . 2 ⊢ ((𝑚 = 𝑀 ∧ 𝑛 = 𝑁) → (suc 𝑚 = 𝑛 ↔ suc 𝑀 = 𝑁)) |
| 4 | df-sucmap 38485 | . 2 ⊢ SucMap = {〈𝑚, 𝑛〉 ∣ suc 𝑚 = 𝑛} | |
| 5 | 3, 4 | brabga 5472 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → (𝑀 SucMap 𝑁 ↔ suc 𝑀 = 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 suc csuc 6308 SucMap csucmap 38227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-suc 6312 df-sucmap 38485 |
| This theorem is referenced by: dmsucmap 38491 dfpre3 38501 sucmapsuc 38511 sucmapleftuniq 38512 exeupre 38513 sucpre 38519 |
| Copyright terms: Public domain | W3C validator |