| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfsucmap2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the successor map. (Contributed by Peter Mazsa, 28-Jan-2026.) |
| Ref | Expression |
|---|---|
| dfsucmap2 | ⊢ SucMap = ( I AdjLiftMap dom I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsucmap3 38486 | . 2 ⊢ SucMap = ( I AdjLiftMap V) | |
| 2 | dmi 5860 | . . . . . 6 ⊢ dom I = V | |
| 3 | 2 | reseq2i 5924 | . . . . 5 ⊢ (( I ∪ ◡ E ) ↾ dom I ) = (( I ∪ ◡ E ) ↾ V) |
| 4 | 3 | dmeqi 5843 | . . . 4 ⊢ dom (( I ∪ ◡ E ) ↾ dom I ) = dom (( I ∪ ◡ E ) ↾ V) |
| 5 | 3 | eceq2i 8664 | . . . 4 ⊢ [𝑚](( I ∪ ◡ E ) ↾ dom I ) = [𝑚](( I ∪ ◡ E ) ↾ V) |
| 6 | 4, 5 | mpteq12i 5186 | . . 3 ⊢ (𝑚 ∈ dom (( I ∪ ◡ E ) ↾ dom I ) ↦ [𝑚](( I ∪ ◡ E ) ↾ dom I )) = (𝑚 ∈ dom (( I ∪ ◡ E ) ↾ V) ↦ [𝑚](( I ∪ ◡ E ) ↾ V)) |
| 7 | df-adjliftmap 38480 | . . 3 ⊢ ( I AdjLiftMap dom I ) = (𝑚 ∈ dom (( I ∪ ◡ E ) ↾ dom I ) ↦ [𝑚](( I ∪ ◡ E ) ↾ dom I )) | |
| 8 | df-adjliftmap 38480 | . . 3 ⊢ ( I AdjLiftMap V) = (𝑚 ∈ dom (( I ∪ ◡ E ) ↾ V) ↦ [𝑚](( I ∪ ◡ E ) ↾ V)) | |
| 9 | 6, 7, 8 | 3eqtr4i 2764 | . 2 ⊢ ( I AdjLiftMap dom I ) = ( I AdjLiftMap V) |
| 10 | 1, 9 | eqtr4i 2757 | 1 ⊢ SucMap = ( I AdjLiftMap dom I ) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3436 ∪ cun 3895 ↦ cmpt 5170 I cid 5508 E cep 5513 ◡ccnv 5613 dom cdm 5614 ↾ cres 5616 [cec 8620 AdjLiftMap cadjliftmap 38225 SucMap csucmap 38227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-eprel 5514 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-suc 6312 df-ec 8624 df-adjliftmap 38480 df-sucmap 38485 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |