| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptv | Structured version Visualization version GIF version | ||
| Description: Function with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.) |
| Ref | Expression |
|---|---|
| mptv | ⊢ (𝑥 ∈ V ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpt 5173 | . 2 ⊢ (𝑥 ∈ V ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 = 𝐵)} | |
| 2 | vex 3440 | . . . 4 ⊢ 𝑥 ∈ V | |
| 3 | 2 | biantrur 530 | . . 3 ⊢ (𝑦 = 𝐵 ↔ (𝑥 ∈ V ∧ 𝑦 = 𝐵)) |
| 4 | 3 | opabbii 5158 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐵} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 = 𝐵)} |
| 5 | 1, 4 | eqtr4i 2757 | 1 ⊢ (𝑥 ∈ V ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {copab 5153 ↦ cmpt 5172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-opab 5154 df-mpt 5173 |
| This theorem is referenced by: df1st2 8028 df2nd2 8029 fsplit 8047 rankf 9687 |
| Copyright terms: Public domain | W3C validator |