![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mptv | Structured version Visualization version GIF version |
Description: Function with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.) |
Ref | Expression |
---|---|
mptv | ⊢ (𝑥 ∈ V ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpt 5193 | . 2 ⊢ (𝑥 ∈ V ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 = 𝐵)} | |
2 | vex 3451 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | biantrur 532 | . . 3 ⊢ (𝑦 = 𝐵 ↔ (𝑥 ∈ V ∧ 𝑦 = 𝐵)) |
4 | 3 | opabbii 5176 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐵} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 = 𝐵)} |
5 | 1, 4 | eqtr4i 2764 | 1 ⊢ (𝑥 ∈ V ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3447 {copab 5171 ↦ cmpt 5192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3449 df-opab 5172 df-mpt 5193 |
This theorem is referenced by: df1st2 8034 df2nd2 8035 fsplit 8053 rankf 9738 |
Copyright terms: Public domain | W3C validator |