MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptv Structured version   Visualization version   GIF version

Theorem mptv 5197
Description: Function with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.)
Assertion
Ref Expression
mptv (𝑥 ∈ V ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐵}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐵
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem mptv
StepHypRef Expression
1 df-mpt 5173 . 2 (𝑥 ∈ V ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 = 𝐵)}
2 vex 3440 . . . 4 𝑥 ∈ V
32biantrur 530 . . 3 (𝑦 = 𝐵 ↔ (𝑥 ∈ V ∧ 𝑦 = 𝐵))
43opabbii 5158 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐵} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 = 𝐵)}
51, 4eqtr4i 2757 1 (𝑥 ∈ V ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐵}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  {copab 5153  cmpt 5172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-opab 5154  df-mpt 5173
This theorem is referenced by:  df1st2  8028  df2nd2  8029  fsplit  8047  rankf  9687
  Copyright terms: Public domain W3C validator