Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mptv | Structured version Visualization version GIF version |
Description: Function with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.) |
Ref | Expression |
---|---|
mptv | ⊢ (𝑥 ∈ V ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpt 5158 | . 2 ⊢ (𝑥 ∈ V ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 = 𝐵)} | |
2 | vex 3436 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | biantrur 531 | . . 3 ⊢ (𝑦 = 𝐵 ↔ (𝑥 ∈ V ∧ 𝑦 = 𝐵)) |
4 | 3 | opabbii 5141 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐵} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 = 𝐵)} |
5 | 1, 4 | eqtr4i 2769 | 1 ⊢ (𝑥 ∈ V ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 {copab 5136 ↦ cmpt 5157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-opab 5137 df-mpt 5158 |
This theorem is referenced by: df1st2 7938 df2nd2 7939 fsplit 7957 fsplitOLD 7958 rankf 9552 |
Copyright terms: Public domain | W3C validator |