MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptv Structured version   Visualization version   GIF version

Theorem mptv 5189
Description: Function with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.)
Assertion
Ref Expression
mptv (𝑥 ∈ V ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐵}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐵
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem mptv
StepHypRef Expression
1 df-mpt 5157 . 2 (𝑥 ∈ V ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 = 𝐵)}
2 vex 3433 . . . 4 𝑥 ∈ V
32biantrur 531 . . 3 (𝑦 = 𝐵 ↔ (𝑥 ∈ V ∧ 𝑦 = 𝐵))
43opabbii 5140 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐵} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 = 𝐵)}
51, 4eqtr4i 2769 1 (𝑥 ∈ V ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐵}
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wcel 2106  Vcvv 3429  {copab 5135  cmpt 5156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3431  df-opab 5136  df-mpt 5157
This theorem is referenced by:  df1st2  7925  df2nd2  7926  fsplit  7944  fsplitOLD  7945  rankf  9562
  Copyright terms: Public domain W3C validator