![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mptv | Structured version Visualization version GIF version |
Description: Function with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.) |
Ref | Expression |
---|---|
mptv | ⊢ (𝑥 ∈ V ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpt 5009 | . 2 ⊢ (𝑥 ∈ V ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 = 𝐵)} | |
2 | vex 3418 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | biantrur 523 | . . 3 ⊢ (𝑦 = 𝐵 ↔ (𝑥 ∈ V ∧ 𝑦 = 𝐵)) |
4 | 3 | opabbii 4996 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐵} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 = 𝐵)} |
5 | 1, 4 | eqtr4i 2805 | 1 ⊢ (𝑥 ∈ V ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 387 = wceq 1507 ∈ wcel 2050 Vcvv 3415 {copab 4991 ↦ cmpt 5008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-12 2106 ax-ext 2750 |
This theorem depends on definitions: df-bi 199 df-an 388 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2759 df-cleq 2771 df-clel 2846 df-v 3417 df-opab 4992 df-mpt 5009 |
This theorem is referenced by: df1st2 7601 df2nd2 7602 fsplit 7620 rankf 9017 |
Copyright terms: Public domain | W3C validator |