Proof of Theorem 2uasbanhVD
Step | Hyp | Ref
| Expression |
1 | | idn1 42194 |
. . . . . . . 8
⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)) ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)) ) |
2 | | simpl 483 |
. . . . . . . 8
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)) → (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
3 | 1, 2 | e1a 42247 |
. . . . . . 7
⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)) ▶ (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ) |
4 | | simpr 485 |
. . . . . . . . 9
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)) → (𝜑 ∧ 𝜓)) |
5 | 1, 4 | e1a 42247 |
. . . . . . . 8
⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)) ▶ (𝜑 ∧ 𝜓) ) |
6 | | simpl 483 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝜓) → 𝜑) |
7 | 5, 6 | e1a 42247 |
. . . . . . 7
⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)) ▶ 𝜑 ) |
8 | | pm3.2 470 |
. . . . . . 7
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (𝜑 → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))) |
9 | 3, 7, 8 | e11 42308 |
. . . . . 6
⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)) ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ) |
10 | 9 | in1 42191 |
. . . . 5
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)) → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) |
11 | 10 | eximi 1837 |
. . . 4
⊢
(∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)) → ∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) |
12 | 11 | eximi 1837 |
. . 3
⊢
(∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)) → ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) |
13 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝜓) → 𝜓) |
14 | 5, 13 | e1a 42247 |
. . . . . . 7
⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)) ▶ 𝜓 ) |
15 | | pm3.2 470 |
. . . . . . 7
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (𝜓 → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))) |
16 | 3, 14, 15 | e11 42308 |
. . . . . 6
⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)) ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓) ) |
17 | 16 | in1 42191 |
. . . . 5
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)) → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)) |
18 | 17 | eximi 1837 |
. . . 4
⊢
(∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)) → ∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)) |
19 | 18 | eximi 1837 |
. . 3
⊢
(∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)) → ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)) |
20 | 12, 19 | jca 512 |
. 2
⊢
(∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)) → (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))) |
21 | | 2uasbanhVD.1 |
. . 3
⊢ (𝜒 ↔ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))) |
22 | 21 | biimpi 215 |
. . . . . . . . 9
⊢ (𝜒 → (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))) |
23 | 22 | dfvd1ir 42193 |
. . . . . . . 8
⊢ ( 𝜒 ▶ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)) ) |
24 | | simpl 483 |
. . . . . . . 8
⊢
((∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)) → ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) |
25 | 23, 24 | e1a 42247 |
. . . . . . 7
⊢ ( 𝜒 ▶ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ) |
26 | | simpl 483 |
. . . . . . . . . . 11
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) → (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
27 | 26 | 2eximi 1838 |
. . . . . . . . . 10
⊢
(∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
28 | 25, 27 | e1a 42247 |
. . . . . . . . 9
⊢ ( 𝜒 ▶ ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ) |
29 | | ax6e2ndeq 42179 |
. . . . . . . . . 10
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) ↔ ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
30 | 29 | biimpri 227 |
. . . . . . . . 9
⊢
(∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣)) |
31 | 28, 30 | e1a 42247 |
. . . . . . . 8
⊢ ( 𝜒 ▶ (¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) ) |
32 | | 2sb5nd 42180 |
. . . . . . . 8
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))) |
33 | 31, 32 | e1a 42247 |
. . . . . . 7
⊢ ( 𝜒 ▶ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) ) |
34 | | biimpr 219 |
. . . . . . . 8
⊢ (([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) → (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) → [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) |
35 | 34 | com12 32 |
. . . . . . 7
⊢
(∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) → (([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) → [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) |
36 | 25, 33, 35 | e11 42308 |
. . . . . 6
⊢ ( 𝜒 ▶ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ) |
37 | | simpr 485 |
. . . . . . . 8
⊢
((∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)) → ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)) |
38 | 23, 37 | e1a 42247 |
. . . . . . 7
⊢ ( 𝜒 ▶ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓) ) |
39 | | 2sb5nd 42180 |
. . . . . . . 8
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜓 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))) |
40 | 31, 39 | e1a 42247 |
. . . . . . 7
⊢ ( 𝜒 ▶ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜓 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)) ) |
41 | | biimpr 219 |
. . . . . . . 8
⊢ (([𝑢 / 𝑥][𝑣 / 𝑦]𝜓 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)) → (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓) → [𝑢 / 𝑥][𝑣 / 𝑦]𝜓)) |
42 | 41 | com12 32 |
. . . . . . 7
⊢
(∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓) → (([𝑢 / 𝑥][𝑣 / 𝑦]𝜓 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)) → [𝑢 / 𝑥][𝑣 / 𝑦]𝜓)) |
43 | 38, 40, 42 | e11 42308 |
. . . . . 6
⊢ ( 𝜒 ▶ [𝑢 / 𝑥][𝑣 / 𝑦]𝜓 ) |
44 | | sban 2083 |
. . . . . . . 8
⊢ ([𝑣 / 𝑦](𝜑 ∧ 𝜓) ↔ ([𝑣 / 𝑦]𝜑 ∧ [𝑣 / 𝑦]𝜓)) |
45 | 44 | sbbii 2079 |
. . . . . . 7
⊢ ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑 ∧ 𝜓) ↔ [𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 ∧ [𝑣 / 𝑦]𝜓)) |
46 | | sban 2083 |
. . . . . . 7
⊢ ([𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 ∧ [𝑣 / 𝑦]𝜓) ↔ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜓)) |
47 | 45, 46 | bitri 274 |
. . . . . 6
⊢ ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑 ∧ 𝜓) ↔ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜓)) |
48 | | simplbi2comt 502 |
. . . . . . 7
⊢ (([𝑢 / 𝑥][𝑣 / 𝑦](𝜑 ∧ 𝜓) ↔ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜓)) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜓 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥][𝑣 / 𝑦](𝜑 ∧ 𝜓)))) |
49 | 48 | com13 88 |
. . . . . 6
⊢ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜓 → (([𝑢 / 𝑥][𝑣 / 𝑦](𝜑 ∧ 𝜓) ↔ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜓)) → [𝑢 / 𝑥][𝑣 / 𝑦](𝜑 ∧ 𝜓)))) |
50 | 36, 43, 47, 49 | e110 42296 |
. . . . 5
⊢ ( 𝜒 ▶ [𝑢 / 𝑥][𝑣 / 𝑦](𝜑 ∧ 𝜓) ) |
51 | | 2sb5nd 42180 |
. . . . . 6
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑 ∧ 𝜓) ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)))) |
52 | 31, 51 | e1a 42247 |
. . . . 5
⊢ ( 𝜒 ▶ ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑 ∧ 𝜓) ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓))) ) |
53 | | biimp 214 |
. . . . . 6
⊢ (([𝑢 / 𝑥][𝑣 / 𝑦](𝜑 ∧ 𝜓) ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓))) → ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑 ∧ 𝜓) → ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)))) |
54 | 53 | com12 32 |
. . . . 5
⊢ ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑 ∧ 𝜓) → (([𝑢 / 𝑥][𝑣 / 𝑦](𝜑 ∧ 𝜓) ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓))) → ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)))) |
55 | 50, 52, 54 | e11 42308 |
. . . 4
⊢ ( 𝜒 ▶ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)) ) |
56 | 55 | in1 42191 |
. . 3
⊢ (𝜒 → ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓))) |
57 | 21, 56 | sylbir 234 |
. 2
⊢
((∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)) → ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓))) |
58 | 20, 57 | impbii 208 |
1
⊢
(∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)) ↔ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))) |