MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difin0 Structured version   Visualization version   GIF version

Theorem difin0 4497
Description: The difference of a class from its intersection is empty. Theorem 37 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
difin0 ((𝐴𝐵) ∖ 𝐵) = ∅

Proof of Theorem difin0
StepHypRef Expression
1 inss2 4259 . 2 (𝐴𝐵) ⊆ 𝐵
2 ssdif0 4389 . 2 ((𝐴𝐵) ⊆ 𝐵 ↔ ((𝐴𝐵) ∖ 𝐵) = ∅)
31, 2mpbi 230 1 ((𝐴𝐵) ∖ 𝐵) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cdif 3973  cin 3975  wss 3976  c0 4352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-in 3983  df-ss 3993  df-nul 4353
This theorem is referenced by:  volinun  25602
  Copyright terms: Public domain W3C validator