![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difin0 | Structured version Visualization version GIF version |
Description: The difference of a class from its intersection is empty. Theorem 37 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
difin0 | ⊢ ((𝐴 ∩ 𝐵) ∖ 𝐵) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss2 4087 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
2 | ssdif0 4203 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐵 ↔ ((𝐴 ∩ 𝐵) ∖ 𝐵) = ∅) | |
3 | 1, 2 | mpbi 222 | 1 ⊢ ((𝐴 ∩ 𝐵) ∖ 𝐵) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1508 ∖ cdif 3819 ∩ cin 3821 ⊆ wss 3822 ∅c0 4172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2743 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-v 3410 df-dif 3825 df-in 3829 df-ss 3836 df-nul 4173 |
This theorem is referenced by: volinun 23865 |
Copyright terms: Public domain | W3C validator |