| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difin0 | Structured version Visualization version GIF version | ||
| Description: The difference of a class from its intersection is empty. Theorem 37 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| difin0 | ⊢ ((𝐴 ∩ 𝐵) ∖ 𝐵) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss2 4218 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
| 2 | ssdif0 4346 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐵 ↔ ((𝐴 ∩ 𝐵) ∖ 𝐵) = ∅) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ ((𝐴 ∩ 𝐵) ∖ 𝐵) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∖ cdif 3928 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-in 3938 df-ss 3948 df-nul 4314 |
| This theorem is referenced by: volinun 25517 |
| Copyright terms: Public domain | W3C validator |