| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difin0 | Structured version Visualization version GIF version | ||
| Description: The difference of a class from its intersection is empty. Theorem 37 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| difin0 | ⊢ ((𝐴 ∩ 𝐵) ∖ 𝐵) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss2 4203 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
| 2 | ssdif0 4331 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐵 ↔ ((𝐴 ∩ 𝐵) ∖ 𝐵) = ∅) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ ((𝐴 ∩ 𝐵) ∖ 𝐵) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3913 ∩ cin 3915 ⊆ wss 3916 ∅c0 4298 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3919 df-in 3923 df-ss 3933 df-nul 4299 |
| This theorem is referenced by: volinun 25453 |
| Copyright terms: Public domain | W3C validator |