MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difin0 Structured version   Visualization version   GIF version

Theorem difin0 4474
Description: The difference of a class from its intersection is empty. Theorem 37 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
difin0 ((𝐴𝐵) ∖ 𝐵) = ∅

Proof of Theorem difin0
StepHypRef Expression
1 inss2 4230 . 2 (𝐴𝐵) ⊆ 𝐵
2 ssdif0 4364 . 2 ((𝐴𝐵) ⊆ 𝐵 ↔ ((𝐴𝐵) ∖ 𝐵) = ∅)
31, 2mpbi 229 1 ((𝐴𝐵) ∖ 𝐵) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  cdif 3946  cin 3948  wss 3949  c0 4323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-in 3956  df-ss 3966  df-nul 4324
This theorem is referenced by:  volinun  25063
  Copyright terms: Public domain W3C validator