Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difin0 | Structured version Visualization version GIF version |
Description: The difference of a class from its intersection is empty. Theorem 37 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
difin0 | ⊢ ((𝐴 ∩ 𝐵) ∖ 𝐵) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss2 4161 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
2 | ssdif0 4295 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐵 ↔ ((𝐴 ∩ 𝐵) ∖ 𝐵) = ∅) | |
3 | 1, 2 | mpbi 233 | 1 ⊢ ((𝐴 ∩ 𝐵) ∖ 𝐵) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∖ cdif 3881 ∩ cin 3883 ⊆ wss 3884 ∅c0 4254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-rab 3073 df-v 3425 df-dif 3887 df-in 3891 df-ss 3901 df-nul 4255 |
This theorem is referenced by: volinun 24590 |
Copyright terms: Public domain | W3C validator |