 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  difin0 Structured version   Visualization version   GIF version

Theorem difin0 4299
 Description: The difference of a class from its intersection is empty. Theorem 37 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
difin0 ((𝐴𝐵) ∖ 𝐵) = ∅

Proof of Theorem difin0
StepHypRef Expression
1 inss2 4087 . 2 (𝐴𝐵) ⊆ 𝐵
2 ssdif0 4203 . 2 ((𝐴𝐵) ⊆ 𝐵 ↔ ((𝐴𝐵) ∖ 𝐵) = ∅)
31, 2mpbi 222 1 ((𝐴𝐵) ∖ 𝐵) = ∅
 Colors of variables: wff setvar class Syntax hints:   = wceq 1508   ∖ cdif 3819   ∩ cin 3821   ⊆ wss 3822  ∅c0 4172 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-ext 2743 This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-v 3410  df-dif 3825  df-in 3829  df-ss 3836  df-nul 4173 This theorem is referenced by:  volinun  23865
 Copyright terms: Public domain W3C validator