![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difin0 | Structured version Visualization version GIF version |
Description: The difference of a class from its intersection is empty. Theorem 37 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
difin0 | ⊢ ((𝐴 ∩ 𝐵) ∖ 𝐵) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss2 4249 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
2 | ssdif0 4375 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐵 ↔ ((𝐴 ∩ 𝐵) ∖ 𝐵) = ∅) | |
3 | 1, 2 | mpbi 230 | 1 ⊢ ((𝐴 ∩ 𝐵) ∖ 𝐵) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∖ cdif 3963 ∩ cin 3965 ⊆ wss 3966 ∅c0 4342 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3483 df-dif 3969 df-in 3973 df-ss 3983 df-nul 4343 |
This theorem is referenced by: volinun 25606 |
Copyright terms: Public domain | W3C validator |