MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difin0 Structured version   Visualization version   GIF version

Theorem difin0 4439
Description: The difference of a class from its intersection is empty. Theorem 37 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
difin0 ((𝐴𝐵) ∖ 𝐵) = ∅

Proof of Theorem difin0
StepHypRef Expression
1 inss2 4203 . 2 (𝐴𝐵) ⊆ 𝐵
2 ssdif0 4331 . 2 ((𝐴𝐵) ⊆ 𝐵 ↔ ((𝐴𝐵) ∖ 𝐵) = ∅)
31, 2mpbi 230 1 ((𝐴𝐵) ∖ 𝐵) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdif 3913  cin 3915  wss 3916  c0 4298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3919  df-in 3923  df-ss 3933  df-nul 4299
This theorem is referenced by:  volinun  25453
  Copyright terms: Public domain W3C validator