MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unvdif Structured version   Visualization version   GIF version

Theorem unvdif 4425
Description: The union of a class and its complement is the universe. Theorem 5.1(5) of [Stoll] p. 17. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
unvdif (𝐴 ∪ (V ∖ 𝐴)) = V

Proof of Theorem unvdif
StepHypRef Expression
1 dfun3 4226 . 2 (𝐴 ∪ (V ∖ 𝐴)) = (V ∖ ((V ∖ 𝐴) ∩ (V ∖ (V ∖ 𝐴))))
2 disjdif 4422 . . 3 ((V ∖ 𝐴) ∩ (V ∖ (V ∖ 𝐴))) = ∅
32difeq2i 4073 . 2 (V ∖ ((V ∖ 𝐴) ∩ (V ∖ (V ∖ 𝐴)))) = (V ∖ ∅)
4 dif0 4328 . 2 (V ∖ ∅) = V
51, 3, 43eqtri 2758 1 (𝐴 ∪ (V ∖ 𝐴)) = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  Vcvv 3436  cdif 3899  cun 3900  cin 3901  c0 4283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284
This theorem is referenced by:  undif1  4426  dfif4  4491  hashfxnn0  14244  fullfunfnv  35986  hfext  36223
  Copyright terms: Public domain W3C validator