![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unvdif | Structured version Visualization version GIF version |
Description: The union of a class and its complement is the universe. Theorem 5.1(5) of [Stoll] p. 17. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
unvdif | ⊢ (𝐴 ∪ (V ∖ 𝐴)) = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfun3 4265 | . 2 ⊢ (𝐴 ∪ (V ∖ 𝐴)) = (V ∖ ((V ∖ 𝐴) ∩ (V ∖ (V ∖ 𝐴)))) | |
2 | disjdif 4471 | . . 3 ⊢ ((V ∖ 𝐴) ∩ (V ∖ (V ∖ 𝐴))) = ∅ | |
3 | 2 | difeq2i 4119 | . 2 ⊢ (V ∖ ((V ∖ 𝐴) ∩ (V ∖ (V ∖ 𝐴)))) = (V ∖ ∅) |
4 | dif0 4372 | . 2 ⊢ (V ∖ ∅) = V | |
5 | 1, 3, 4 | 3eqtri 2763 | 1 ⊢ (𝐴 ∪ (V ∖ 𝐴)) = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 Vcvv 3473 ∖ cdif 3945 ∪ cun 3946 ∩ cin 3947 ∅c0 4322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 |
This theorem is referenced by: undif1 4475 dfif4 4543 hashfxnn0 14304 fullfunfnv 35389 hfext 35626 |
Copyright terms: Public domain | W3C validator |