![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unvdif | Structured version Visualization version GIF version |
Description: The union of a class and its complement is the universe. Theorem 5.1(5) of [Stoll] p. 17. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
unvdif | ⊢ (𝐴 ∪ (V ∖ 𝐴)) = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfun3 4295 | . 2 ⊢ (𝐴 ∪ (V ∖ 𝐴)) = (V ∖ ((V ∖ 𝐴) ∩ (V ∖ (V ∖ 𝐴)))) | |
2 | disjdif 4495 | . . 3 ⊢ ((V ∖ 𝐴) ∩ (V ∖ (V ∖ 𝐴))) = ∅ | |
3 | 2 | difeq2i 4146 | . 2 ⊢ (V ∖ ((V ∖ 𝐴) ∩ (V ∖ (V ∖ 𝐴)))) = (V ∖ ∅) |
4 | dif0 4400 | . 2 ⊢ (V ∖ ∅) = V | |
5 | 1, 3, 4 | 3eqtri 2772 | 1 ⊢ (𝐴 ∪ (V ∖ 𝐴)) = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 Vcvv 3488 ∖ cdif 3973 ∪ cun 3974 ∩ cin 3975 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 |
This theorem is referenced by: undif1 4499 dfif4 4563 hashfxnn0 14386 fullfunfnv 35910 hfext 36147 |
Copyright terms: Public domain | W3C validator |