![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unvdif | Structured version Visualization version GIF version |
Description: The union of a class and its complement is the universe. Theorem 5.1(5) of [Stoll] p. 17. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
unvdif | ⊢ (𝐴 ∪ (V ∖ 𝐴)) = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfun3 4267 | . 2 ⊢ (𝐴 ∪ (V ∖ 𝐴)) = (V ∖ ((V ∖ 𝐴) ∩ (V ∖ (V ∖ 𝐴)))) | |
2 | disjdif 4476 | . . 3 ⊢ ((V ∖ 𝐴) ∩ (V ∖ (V ∖ 𝐴))) = ∅ | |
3 | 2 | difeq2i 4118 | . 2 ⊢ (V ∖ ((V ∖ 𝐴) ∩ (V ∖ (V ∖ 𝐴)))) = (V ∖ ∅) |
4 | dif0 4377 | . 2 ⊢ (V ∖ ∅) = V | |
5 | 1, 3, 4 | 3eqtri 2758 | 1 ⊢ (𝐴 ∪ (V ∖ 𝐴)) = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 Vcvv 3462 ∖ cdif 3944 ∪ cun 3945 ∩ cin 3946 ∅c0 4325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 |
This theorem is referenced by: undif1 4480 dfif4 4548 hashfxnn0 14356 fullfunfnv 35772 hfext 36009 |
Copyright terms: Public domain | W3C validator |