MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unvdif Structured version   Visualization version   GIF version

Theorem unvdif 4438
Description: The union of a class and its complement is the universe. Theorem 5.1(5) of [Stoll] p. 17. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
unvdif (𝐴 ∪ (V ∖ 𝐴)) = V

Proof of Theorem unvdif
StepHypRef Expression
1 dfun3 4239 . 2 (𝐴 ∪ (V ∖ 𝐴)) = (V ∖ ((V ∖ 𝐴) ∩ (V ∖ (V ∖ 𝐴))))
2 disjdif 4435 . . 3 ((V ∖ 𝐴) ∩ (V ∖ (V ∖ 𝐴))) = ∅
32difeq2i 4086 . 2 (V ∖ ((V ∖ 𝐴) ∩ (V ∖ (V ∖ 𝐴)))) = (V ∖ ∅)
4 dif0 4341 . 2 (V ∖ ∅) = V
51, 3, 43eqtri 2756 1 (𝐴 ∪ (V ∖ 𝐴)) = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3447  cdif 3911  cun 3912  cin 3913  c0 4296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297
This theorem is referenced by:  undif1  4439  dfif4  4504  hashfxnn0  14302  fullfunfnv  35934  hfext  36171
  Copyright terms: Public domain W3C validator