MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unvdif Structured version   Visualization version   GIF version

Theorem unvdif 4408
Description: The union of a class and its complement is the universe. Theorem 5.1(5) of [Stoll] p. 17. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
unvdif (𝐴 ∪ (V ∖ 𝐴)) = V

Proof of Theorem unvdif
StepHypRef Expression
1 dfun3 4199 . 2 (𝐴 ∪ (V ∖ 𝐴)) = (V ∖ ((V ∖ 𝐴) ∩ (V ∖ (V ∖ 𝐴))))
2 disjdif 4405 . . 3 ((V ∖ 𝐴) ∩ (V ∖ (V ∖ 𝐴))) = ∅
32difeq2i 4054 . 2 (V ∖ ((V ∖ 𝐴) ∩ (V ∖ (V ∖ 𝐴)))) = (V ∖ ∅)
4 dif0 4306 . 2 (V ∖ ∅) = V
51, 3, 43eqtri 2770 1 (𝐴 ∪ (V ∖ 𝐴)) = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  Vcvv 3432  cdif 3884  cun 3885  cin 3886  c0 4256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257
This theorem is referenced by:  undif1  4409  dfif4  4474  hashfxnn0  14051  fullfunfnv  34248  hfext  34485
  Copyright terms: Public domain W3C validator