| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unvdif | Structured version Visualization version GIF version | ||
| Description: The union of a class and its complement is the universe. Theorem 5.1(5) of [Stoll] p. 17. (Contributed by NM, 17-Aug-2004.) |
| Ref | Expression |
|---|---|
| unvdif | ⊢ (𝐴 ∪ (V ∖ 𝐴)) = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfun3 4225 | . 2 ⊢ (𝐴 ∪ (V ∖ 𝐴)) = (V ∖ ((V ∖ 𝐴) ∩ (V ∖ (V ∖ 𝐴)))) | |
| 2 | disjdif 4421 | . . 3 ⊢ ((V ∖ 𝐴) ∩ (V ∖ (V ∖ 𝐴))) = ∅ | |
| 3 | 2 | difeq2i 4072 | . 2 ⊢ (V ∖ ((V ∖ 𝐴) ∩ (V ∖ (V ∖ 𝐴)))) = (V ∖ ∅) |
| 4 | dif0 4327 | . 2 ⊢ (V ∖ ∅) = V | |
| 5 | 1, 3, 4 | 3eqtri 2760 | 1 ⊢ (𝐴 ∪ (V ∖ 𝐴)) = V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3437 ∖ cdif 3895 ∪ cun 3896 ∩ cin 3897 ∅c0 4282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 |
| This theorem is referenced by: undif1 4425 dfif4 4492 hashfxnn0 14248 fullfunfnv 36013 hfext 36250 |
| Copyright terms: Public domain | W3C validator |