Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > disjdifr | Structured version Visualization version GIF version |
Description: A class and its relative complement are disjoint. (Contributed by Thierry Arnoux, 29-Nov-2023.) |
Ref | Expression |
---|---|
disjdifr | ⊢ ((𝐵 ∖ 𝐴) ∩ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4135 | . 2 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ((𝐵 ∖ 𝐴) ∩ 𝐴) | |
2 | disjdif 4405 | . 2 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
3 | 1, 2 | eqtr3i 2768 | 1 ⊢ ((𝐵 ∖ 𝐴) ∩ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∖ cdif 3884 ∩ cin 3886 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-nul 4257 |
This theorem is referenced by: ssdifin0 4416 fvsnun1 7054 fveqf1o 7175 f1ofvswap 7178 ralxpmap 8684 difsnen 8840 domunsn 8914 limensuci 8940 pssnn 8951 marypha1lem 9192 dif1card 9766 ackbij1lem18 9993 canthp1lem1 10408 grothprim 10590 hashgval 14047 hashun3 14099 hashfun 14152 hashbclem 14164 setsfun 16872 setsfun0 16873 setsid 16909 mreexexlem4d 17356 pwssplit1 20321 islindf4 21045 neitr 22331 regsep2 22527 restmetu 23726 volinun 24710 tdeglem4 25224 difeq 30865 disjdifprg 30914 tocycfvres1 31377 tocycfvres2 31378 cycpmfvlem 31379 cycpmfv3 31382 cycpmcl 31383 measunl 32184 eulerpartlemt 32338 mthmpps 33544 noetasuplem3 33938 noetasuplem4 33939 cldbnd 34515 poimirlem15 35792 poimirlem16 35793 poimirlem19 35796 poimirlem27 35804 eldioph2lem1 40582 eldioph2lem2 40583 diophren 40635 kelac1 40888 isomenndlem 44068 seposep 46219 |
Copyright terms: Public domain | W3C validator |