| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjdifr | Structured version Visualization version GIF version | ||
| Description: A class and its relative complement are disjoint. (Contributed by Thierry Arnoux, 29-Nov-2023.) |
| Ref | Expression |
|---|---|
| disjdifr | ⊢ ((𝐵 ∖ 𝐴) ∩ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4158 | . 2 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ((𝐵 ∖ 𝐴) ∩ 𝐴) | |
| 2 | disjdif 4421 | . 2 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
| 3 | 1, 2 | eqtr3i 2758 | 1 ⊢ ((𝐵 ∖ 𝐴) ∩ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∖ cdif 3895 ∩ cin 3897 ∅c0 4282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-in 3905 df-ss 3915 df-nul 4283 |
| This theorem is referenced by: ssdifin0 4435 fvsnun1 7124 fveqf1o 7244 f1ofvswap 7248 ralxpmap 8828 difsnen 8981 domunsn 9049 limensuci 9075 pssnn 9087 marypha1lem 9326 dif1card 9910 ackbij1lem18 10136 canthp1lem1 10552 grothprim 10734 hashgval 14244 hashun3 14295 hashfun 14348 hashbclem 14363 setsfun 17086 setsfun0 17087 setsid 17122 mreexexlem4d 17557 pwssplit1 20997 islindf4 21779 psdmul 22084 neitr 23098 regsep2 23294 restmetu 24488 volinun 25477 tdeglem4 25995 noetasuplem3 27677 noetasuplem4 27678 difeq 32502 disjdifprg 32559 tocycfvres1 33088 tocycfvres2 33089 cycpmfvlem 33090 cycpmfv3 33093 cycpmcl 33094 rprmdvdsprod 33508 esplyind 33615 measunl 34252 eulerpartlemt 34407 mthmpps 35649 cldbnd 36393 poimirlem15 37698 poimirlem16 37699 poimirlem19 37702 poimirlem27 37710 selvvvval 42706 evlselvlem 42707 evlselv 42708 eldioph2lem1 42880 eldioph2lem2 42881 diophren 42933 kelac1 43183 isomenndlem 46655 seposep 49053 |
| Copyright terms: Public domain | W3C validator |