| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjdifr | Structured version Visualization version GIF version | ||
| Description: A class and its relative complement are disjoint. (Contributed by Thierry Arnoux, 29-Nov-2023.) |
| Ref | Expression |
|---|---|
| disjdifr | ⊢ ((𝐵 ∖ 𝐴) ∩ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4175 | . 2 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ((𝐵 ∖ 𝐴) ∩ 𝐴) | |
| 2 | disjdif 4438 | . 2 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
| 3 | 1, 2 | eqtr3i 2755 | 1 ⊢ ((𝐵 ∖ 𝐴) ∩ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3914 ∩ cin 3916 ∅c0 4299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-in 3924 df-ss 3934 df-nul 4300 |
| This theorem is referenced by: ssdifin0 4452 fvsnun1 7159 fveqf1o 7280 f1ofvswap 7284 ralxpmap 8872 difsnen 9027 domunsn 9097 limensuci 9123 pssnn 9138 marypha1lem 9391 dif1card 9970 ackbij1lem18 10196 canthp1lem1 10612 grothprim 10794 hashgval 14305 hashun3 14356 hashfun 14409 hashbclem 14424 setsfun 17148 setsfun0 17149 setsid 17184 mreexexlem4d 17615 pwssplit1 20973 islindf4 21754 psdmul 22060 neitr 23074 regsep2 23270 restmetu 24465 volinun 25454 tdeglem4 25972 noetasuplem3 27654 noetasuplem4 27655 difeq 32454 disjdifprg 32511 tocycfvres1 33074 tocycfvres2 33075 cycpmfvlem 33076 cycpmfv3 33079 cycpmcl 33080 rprmdvdsprod 33512 measunl 34213 eulerpartlemt 34369 mthmpps 35576 cldbnd 36321 poimirlem15 37636 poimirlem16 37637 poimirlem19 37640 poimirlem27 37648 selvvvval 42580 evlselvlem 42581 evlselv 42582 eldioph2lem1 42755 eldioph2lem2 42756 diophren 42808 kelac1 43059 isomenndlem 46535 seposep 48918 |
| Copyright terms: Public domain | W3C validator |