Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > disjdifr | Structured version Visualization version GIF version |
Description: A class and its relative complement are disjoint. (Contributed by Thierry Arnoux, 29-Nov-2023.) |
Ref | Expression |
---|---|
disjdifr | ⊢ ((𝐵 ∖ 𝐴) ∩ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4131 | . 2 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ((𝐵 ∖ 𝐴) ∩ 𝐴) | |
2 | disjdif 4402 | . 2 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
3 | 1, 2 | eqtr3i 2768 | 1 ⊢ ((𝐵 ∖ 𝐴) ∩ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∖ cdif 3880 ∩ cin 3882 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 |
This theorem is referenced by: ssdifin0 4413 fvsnun1 7036 fveqf1o 7155 f1ofvswap 7158 ralxpmap 8642 difsnen 8794 domunsn 8863 limensuci 8889 pssnn 8913 marypha1lem 9122 dif1card 9697 ackbij1lem18 9924 canthp1lem1 10339 grothprim 10521 hashgval 13975 hashun3 14027 hashfun 14080 hashbclem 14092 setsfun 16800 setsfun0 16801 setsid 16837 mreexexlem4d 17273 pwssplit1 20236 islindf4 20955 neitr 22239 regsep2 22435 restmetu 23632 volinun 24615 tdeglem4 25129 difeq 30766 disjdifprg 30815 tocycfvres1 31279 tocycfvres2 31280 cycpmfvlem 31281 cycpmfv3 31284 cycpmcl 31285 measunl 32084 eulerpartlemt 32238 mthmpps 33444 noetasuplem3 33865 noetasuplem4 33866 cldbnd 34442 poimirlem15 35719 poimirlem16 35720 poimirlem19 35723 poimirlem27 35731 eldioph2lem1 40498 eldioph2lem2 40499 diophren 40551 kelac1 40804 isomenndlem 43958 seposep 46107 |
Copyright terms: Public domain | W3C validator |