![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disjdifr | Structured version Visualization version GIF version |
Description: A class and its relative complement are disjoint. (Contributed by Thierry Arnoux, 29-Nov-2023.) |
Ref | Expression |
---|---|
disjdifr | ⊢ ((𝐵 ∖ 𝐴) ∩ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4230 | . 2 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ((𝐵 ∖ 𝐴) ∩ 𝐴) | |
2 | disjdif 4495 | . 2 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
3 | 1, 2 | eqtr3i 2770 | 1 ⊢ ((𝐵 ∖ 𝐴) ∩ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∖ cdif 3973 ∩ cin 3975 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-in 3983 df-ss 3993 df-nul 4353 |
This theorem is referenced by: ssdifin0 4509 fvsnun1 7216 fveqf1o 7338 f1ofvswap 7342 ralxpmap 8954 difsnen 9119 domunsn 9193 limensuci 9219 pssnn 9234 marypha1lem 9502 dif1card 10079 ackbij1lem18 10305 canthp1lem1 10721 grothprim 10903 hashgval 14382 hashun3 14433 hashfun 14486 hashbclem 14501 setsfun 17218 setsfun0 17219 setsid 17255 mreexexlem4d 17705 pwssplit1 21081 islindf4 21881 psdmul 22193 neitr 23209 regsep2 23405 restmetu 24604 volinun 25600 tdeglem4 26119 noetasuplem3 27798 noetasuplem4 27799 difeq 32548 disjdifprg 32597 tocycfvres1 33103 tocycfvres2 33104 cycpmfvlem 33105 cycpmfv3 33108 cycpmcl 33109 rprmdvdsprod 33527 measunl 34180 eulerpartlemt 34336 mthmpps 35550 cldbnd 36292 poimirlem15 37595 poimirlem16 37596 poimirlem19 37599 poimirlem27 37607 selvvvval 42540 evlselvlem 42541 evlselv 42542 eldioph2lem1 42716 eldioph2lem2 42717 diophren 42769 kelac1 43020 isomenndlem 46451 seposep 48605 |
Copyright terms: Public domain | W3C validator |