| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjdifr | Structured version Visualization version GIF version | ||
| Description: A class and its relative complement are disjoint. (Contributed by Thierry Arnoux, 29-Nov-2023.) |
| Ref | Expression |
|---|---|
| disjdifr | ⊢ ((𝐵 ∖ 𝐴) ∩ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4159 | . 2 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ((𝐵 ∖ 𝐴) ∩ 𝐴) | |
| 2 | disjdif 4422 | . 2 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
| 3 | 1, 2 | eqtr3i 2756 | 1 ⊢ ((𝐵 ∖ 𝐴) ∩ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∖ cdif 3899 ∩ cin 3901 ∅c0 4283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-in 3909 df-ss 3919 df-nul 4284 |
| This theorem is referenced by: ssdifin0 4436 fvsnun1 7116 fveqf1o 7236 f1ofvswap 7240 ralxpmap 8820 difsnen 8972 domunsn 9040 limensuci 9066 pssnn 9078 marypha1lem 9317 dif1card 9901 ackbij1lem18 10127 canthp1lem1 10543 grothprim 10725 hashgval 14240 hashun3 14291 hashfun 14344 hashbclem 14359 setsfun 17082 setsfun0 17083 setsid 17118 mreexexlem4d 17553 pwssplit1 20994 islindf4 21776 psdmul 22082 neitr 23096 regsep2 23292 restmetu 24486 volinun 25475 tdeglem4 25993 noetasuplem3 27675 noetasuplem4 27676 difeq 32496 disjdifprg 32553 tocycfvres1 33077 tocycfvres2 33078 cycpmfvlem 33079 cycpmfv3 33082 cycpmcl 33083 rprmdvdsprod 33497 measunl 34227 eulerpartlemt 34382 mthmpps 35624 cldbnd 36366 poimirlem15 37681 poimirlem16 37682 poimirlem19 37685 poimirlem27 37693 selvvvval 42624 evlselvlem 42625 evlselv 42626 eldioph2lem1 42799 eldioph2lem2 42800 diophren 42852 kelac1 43102 isomenndlem 46574 seposep 48963 |
| Copyright terms: Public domain | W3C validator |