| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjdifr | Structured version Visualization version GIF version | ||
| Description: A class and its relative complement are disjoint. (Contributed by Thierry Arnoux, 29-Nov-2023.) |
| Ref | Expression |
|---|---|
| disjdifr | ⊢ ((𝐵 ∖ 𝐴) ∩ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4184 | . 2 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ((𝐵 ∖ 𝐴) ∩ 𝐴) | |
| 2 | disjdif 4447 | . 2 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
| 3 | 1, 2 | eqtr3i 2760 | 1 ⊢ ((𝐵 ∖ 𝐴) ∩ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3923 ∩ cin 3925 ∅c0 4308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-in 3933 df-ss 3943 df-nul 4309 |
| This theorem is referenced by: ssdifin0 4461 fvsnun1 7174 fveqf1o 7295 f1ofvswap 7299 ralxpmap 8910 difsnen 9067 domunsn 9141 limensuci 9167 pssnn 9182 marypha1lem 9445 dif1card 10024 ackbij1lem18 10250 canthp1lem1 10666 grothprim 10848 hashgval 14351 hashun3 14402 hashfun 14455 hashbclem 14470 setsfun 17190 setsfun0 17191 setsid 17226 mreexexlem4d 17659 pwssplit1 21017 islindf4 21798 psdmul 22104 neitr 23118 regsep2 23314 restmetu 24509 volinun 25499 tdeglem4 26017 noetasuplem3 27699 noetasuplem4 27700 difeq 32499 disjdifprg 32556 tocycfvres1 33121 tocycfvres2 33122 cycpmfvlem 33123 cycpmfv3 33126 cycpmcl 33127 rprmdvdsprod 33549 measunl 34247 eulerpartlemt 34403 mthmpps 35604 cldbnd 36344 poimirlem15 37659 poimirlem16 37660 poimirlem19 37663 poimirlem27 37671 selvvvval 42608 evlselvlem 42609 evlselv 42610 eldioph2lem1 42783 eldioph2lem2 42784 diophren 42836 kelac1 43087 isomenndlem 46559 seposep 48900 |
| Copyright terms: Public domain | W3C validator |