| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjdifr | Structured version Visualization version GIF version | ||
| Description: A class and its relative complement are disjoint. (Contributed by Thierry Arnoux, 29-Nov-2023.) |
| Ref | Expression |
|---|---|
| disjdifr | ⊢ ((𝐵 ∖ 𝐴) ∩ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4172 | . 2 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ((𝐵 ∖ 𝐴) ∩ 𝐴) | |
| 2 | disjdif 4435 | . 2 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
| 3 | 1, 2 | eqtr3i 2754 | 1 ⊢ ((𝐵 ∖ 𝐴) ∩ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3911 ∩ cin 3913 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-in 3921 df-ss 3931 df-nul 4297 |
| This theorem is referenced by: ssdifin0 4449 fvsnun1 7156 fveqf1o 7277 f1ofvswap 7281 ralxpmap 8869 difsnen 9023 domunsn 9091 limensuci 9117 pssnn 9132 marypha1lem 9384 dif1card 9963 ackbij1lem18 10189 canthp1lem1 10605 grothprim 10787 hashgval 14298 hashun3 14349 hashfun 14402 hashbclem 14417 setsfun 17141 setsfun0 17142 setsid 17177 mreexexlem4d 17608 pwssplit1 20966 islindf4 21747 psdmul 22053 neitr 23067 regsep2 23263 restmetu 24458 volinun 25447 tdeglem4 25965 noetasuplem3 27647 noetasuplem4 27648 difeq 32447 disjdifprg 32504 tocycfvres1 33067 tocycfvres2 33068 cycpmfvlem 33069 cycpmfv3 33072 cycpmcl 33073 rprmdvdsprod 33505 measunl 34206 eulerpartlemt 34362 mthmpps 35569 cldbnd 36314 poimirlem15 37629 poimirlem16 37630 poimirlem19 37633 poimirlem27 37641 selvvvval 42573 evlselvlem 42574 evlselv 42575 eldioph2lem1 42748 eldioph2lem2 42749 diophren 42801 kelac1 43052 isomenndlem 46528 seposep 48914 |
| Copyright terms: Public domain | W3C validator |