| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjdifr | Structured version Visualization version GIF version | ||
| Description: A class and its relative complement are disjoint. (Contributed by Thierry Arnoux, 29-Nov-2023.) |
| Ref | Expression |
|---|---|
| disjdifr | ⊢ ((𝐵 ∖ 𝐴) ∩ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4162 | . 2 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ((𝐵 ∖ 𝐴) ∩ 𝐴) | |
| 2 | disjdif 4425 | . 2 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
| 3 | 1, 2 | eqtr3i 2754 | 1 ⊢ ((𝐵 ∖ 𝐴) ∩ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3902 ∩ cin 3904 ∅c0 4286 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-in 3912 df-ss 3922 df-nul 4287 |
| This theorem is referenced by: ssdifin0 4439 fvsnun1 7122 fveqf1o 7243 f1ofvswap 7247 ralxpmap 8830 difsnen 8983 domunsn 9051 limensuci 9077 pssnn 9092 marypha1lem 9342 dif1card 9923 ackbij1lem18 10149 canthp1lem1 10565 grothprim 10747 hashgval 14258 hashun3 14309 hashfun 14362 hashbclem 14377 setsfun 17100 setsfun0 17101 setsid 17136 mreexexlem4d 17571 pwssplit1 20981 islindf4 21763 psdmul 22069 neitr 23083 regsep2 23279 restmetu 24474 volinun 25463 tdeglem4 25981 noetasuplem3 27663 noetasuplem4 27664 difeq 32480 disjdifprg 32537 tocycfvres1 33065 tocycfvres2 33066 cycpmfvlem 33067 cycpmfv3 33070 cycpmcl 33071 rprmdvdsprod 33484 measunl 34185 eulerpartlemt 34341 mthmpps 35557 cldbnd 36302 poimirlem15 37617 poimirlem16 37618 poimirlem19 37621 poimirlem27 37629 selvvvval 42561 evlselvlem 42562 evlselv 42563 eldioph2lem1 42736 eldioph2lem2 42737 diophren 42789 kelac1 43039 isomenndlem 46515 seposep 48914 |
| Copyright terms: Public domain | W3C validator |