MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volinun Structured version   Visualization version   GIF version

Theorem volinun 25474
Description: Addition of non-disjoint sets. (Contributed by Mario Carneiro, 25-Mar-2015.)
Assertion
Ref Expression
volinun (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → ((vol‘𝐴) + (vol‘𝐵)) = ((vol‘(𝐴𝐵)) + (vol‘(𝐴𝐵))))

Proof of Theorem volinun
StepHypRef Expression
1 inundif 4426 . . . . 5 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
21fveq2i 6825 . . . 4 (vol‘((𝐴𝐵) ∪ (𝐴𝐵))) = (vol‘𝐴)
3 inmbl 25470 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴𝐵) ∈ dom vol)
43adantr 480 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (𝐴𝐵) ∈ dom vol)
5 difmbl 25471 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴𝐵) ∈ dom vol)
65adantr 480 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (𝐴𝐵) ∈ dom vol)
7 indifcom 4230 . . . . . . 7 ((𝐴𝐵) ∩ (𝐴𝐵)) = (𝐴 ∩ ((𝐴𝐵) ∖ 𝐵))
8 difin0 4421 . . . . . . . . 9 ((𝐴𝐵) ∖ 𝐵) = ∅
98ineq2i 4164 . . . . . . . 8 (𝐴 ∩ ((𝐴𝐵) ∖ 𝐵)) = (𝐴 ∩ ∅)
10 in0 4342 . . . . . . . 8 (𝐴 ∩ ∅) = ∅
119, 10eqtri 2754 . . . . . . 7 (𝐴 ∩ ((𝐴𝐵) ∖ 𝐵)) = ∅
127, 11eqtri 2754 . . . . . 6 ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅
1312a1i 11 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅)
14 mblvol 25458 . . . . . . 7 ((𝐴𝐵) ∈ dom vol → (vol‘(𝐴𝐵)) = (vol*‘(𝐴𝐵)))
154, 14syl 17 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴𝐵)) = (vol*‘(𝐴𝐵)))
16 inss1 4184 . . . . . . . 8 (𝐴𝐵) ⊆ 𝐴
1716a1i 11 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (𝐴𝐵) ⊆ 𝐴)
18 mblss 25459 . . . . . . . 8 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
1918ad2antrr 726 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → 𝐴 ⊆ ℝ)
20 mblvol 25458 . . . . . . . . 9 (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴))
2120ad2antrr 726 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘𝐴) = (vol*‘𝐴))
22 simprl 770 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘𝐴) ∈ ℝ)
2321, 22eqeltrrd 2832 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol*‘𝐴) ∈ ℝ)
24 ovolsscl 25414 . . . . . . 7 (((𝐴𝐵) ⊆ 𝐴𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → (vol*‘(𝐴𝐵)) ∈ ℝ)
2517, 19, 23, 24syl3anc 1373 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol*‘(𝐴𝐵)) ∈ ℝ)
2615, 25eqeltrd 2831 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴𝐵)) ∈ ℝ)
27 mblvol 25458 . . . . . . 7 ((𝐴𝐵) ∈ dom vol → (vol‘(𝐴𝐵)) = (vol*‘(𝐴𝐵)))
286, 27syl 17 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴𝐵)) = (vol*‘(𝐴𝐵)))
29 difssd 4084 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (𝐴𝐵) ⊆ 𝐴)
30 ovolsscl 25414 . . . . . . 7 (((𝐴𝐵) ⊆ 𝐴𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → (vol*‘(𝐴𝐵)) ∈ ℝ)
3129, 19, 23, 30syl3anc 1373 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol*‘(𝐴𝐵)) ∈ ℝ)
3228, 31eqeltrd 2831 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴𝐵)) ∈ ℝ)
33 volun 25473 . . . . 5 ((((𝐴𝐵) ∈ dom vol ∧ (𝐴𝐵) ∈ dom vol ∧ ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅) ∧ ((vol‘(𝐴𝐵)) ∈ ℝ ∧ (vol‘(𝐴𝐵)) ∈ ℝ)) → (vol‘((𝐴𝐵) ∪ (𝐴𝐵))) = ((vol‘(𝐴𝐵)) + (vol‘(𝐴𝐵))))
344, 6, 13, 26, 32, 33syl32anc 1380 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘((𝐴𝐵) ∪ (𝐴𝐵))) = ((vol‘(𝐴𝐵)) + (vol‘(𝐴𝐵))))
352, 34eqtr3id 2780 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘𝐴) = ((vol‘(𝐴𝐵)) + (vol‘(𝐴𝐵))))
3635oveq1d 7361 . 2 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → ((vol‘𝐴) + (vol‘𝐵)) = (((vol‘(𝐴𝐵)) + (vol‘(𝐴𝐵))) + (vol‘𝐵)))
3726recnd 11140 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴𝐵)) ∈ ℂ)
3832recnd 11140 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴𝐵)) ∈ ℂ)
39 simprr 772 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘𝐵) ∈ ℝ)
4039recnd 11140 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘𝐵) ∈ ℂ)
4137, 38, 40addassd 11134 . 2 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (((vol‘(𝐴𝐵)) + (vol‘(𝐴𝐵))) + (vol‘𝐵)) = ((vol‘(𝐴𝐵)) + ((vol‘(𝐴𝐵)) + (vol‘𝐵))))
42 simplr 768 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → 𝐵 ∈ dom vol)
43 disjdifr 4420 . . . . . 6 ((𝐴𝐵) ∩ 𝐵) = ∅
4443a1i 11 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → ((𝐴𝐵) ∩ 𝐵) = ∅)
45 volun 25473 . . . . 5 ((((𝐴𝐵) ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ ((𝐴𝐵) ∩ 𝐵) = ∅) ∧ ((vol‘(𝐴𝐵)) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘((𝐴𝐵) ∪ 𝐵)) = ((vol‘(𝐴𝐵)) + (vol‘𝐵)))
466, 42, 44, 32, 39, 45syl32anc 1380 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘((𝐴𝐵) ∪ 𝐵)) = ((vol‘(𝐴𝐵)) + (vol‘𝐵)))
47 undif1 4423 . . . . 5 ((𝐴𝐵) ∪ 𝐵) = (𝐴𝐵)
4847fveq2i 6825 . . . 4 (vol‘((𝐴𝐵) ∪ 𝐵)) = (vol‘(𝐴𝐵))
4946, 48eqtr3di 2781 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → ((vol‘(𝐴𝐵)) + (vol‘𝐵)) = (vol‘(𝐴𝐵)))
5049oveq2d 7362 . 2 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → ((vol‘(𝐴𝐵)) + ((vol‘(𝐴𝐵)) + (vol‘𝐵))) = ((vol‘(𝐴𝐵)) + (vol‘(𝐴𝐵))))
5136, 41, 503eqtrd 2770 1 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → ((vol‘𝐴) + (vol‘𝐵)) = ((vol‘(𝐴𝐵)) + (vol‘(𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cdif 3894  cun 3895  cin 3896  wss 3897  c0 4280  dom cdm 5614  cfv 6481  (class class class)co 7346  cr 11005   + caddc 11009  vol*covol 25390  volcvol 25391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-ioo 13249  df-ico 13251  df-icc 13252  df-fz 13408  df-fl 13696  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-ovol 25392  df-vol 25393
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator