MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volinun Structured version   Visualization version   GIF version

Theorem volinun 25445
Description: Addition of non-disjoint sets. (Contributed by Mario Carneiro, 25-Mar-2015.)
Assertion
Ref Expression
volinun (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → ((vol‘𝐴) + (vol‘𝐵)) = ((vol‘(𝐴𝐵)) + (vol‘(𝐴𝐵))))

Proof of Theorem volinun
StepHypRef Expression
1 inundif 4430 . . . . 5 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
21fveq2i 6825 . . . 4 (vol‘((𝐴𝐵) ∪ (𝐴𝐵))) = (vol‘𝐴)
3 inmbl 25441 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴𝐵) ∈ dom vol)
43adantr 480 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (𝐴𝐵) ∈ dom vol)
5 difmbl 25442 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴𝐵) ∈ dom vol)
65adantr 480 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (𝐴𝐵) ∈ dom vol)
7 indifcom 4234 . . . . . . 7 ((𝐴𝐵) ∩ (𝐴𝐵)) = (𝐴 ∩ ((𝐴𝐵) ∖ 𝐵))
8 difin0 4425 . . . . . . . . 9 ((𝐴𝐵) ∖ 𝐵) = ∅
98ineq2i 4168 . . . . . . . 8 (𝐴 ∩ ((𝐴𝐵) ∖ 𝐵)) = (𝐴 ∩ ∅)
10 in0 4346 . . . . . . . 8 (𝐴 ∩ ∅) = ∅
119, 10eqtri 2752 . . . . . . 7 (𝐴 ∩ ((𝐴𝐵) ∖ 𝐵)) = ∅
127, 11eqtri 2752 . . . . . 6 ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅
1312a1i 11 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅)
14 mblvol 25429 . . . . . . 7 ((𝐴𝐵) ∈ dom vol → (vol‘(𝐴𝐵)) = (vol*‘(𝐴𝐵)))
154, 14syl 17 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴𝐵)) = (vol*‘(𝐴𝐵)))
16 inss1 4188 . . . . . . . 8 (𝐴𝐵) ⊆ 𝐴
1716a1i 11 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (𝐴𝐵) ⊆ 𝐴)
18 mblss 25430 . . . . . . . 8 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
1918ad2antrr 726 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → 𝐴 ⊆ ℝ)
20 mblvol 25429 . . . . . . . . 9 (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴))
2120ad2antrr 726 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘𝐴) = (vol*‘𝐴))
22 simprl 770 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘𝐴) ∈ ℝ)
2321, 22eqeltrrd 2829 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol*‘𝐴) ∈ ℝ)
24 ovolsscl 25385 . . . . . . 7 (((𝐴𝐵) ⊆ 𝐴𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → (vol*‘(𝐴𝐵)) ∈ ℝ)
2517, 19, 23, 24syl3anc 1373 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol*‘(𝐴𝐵)) ∈ ℝ)
2615, 25eqeltrd 2828 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴𝐵)) ∈ ℝ)
27 mblvol 25429 . . . . . . 7 ((𝐴𝐵) ∈ dom vol → (vol‘(𝐴𝐵)) = (vol*‘(𝐴𝐵)))
286, 27syl 17 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴𝐵)) = (vol*‘(𝐴𝐵)))
29 difssd 4088 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (𝐴𝐵) ⊆ 𝐴)
30 ovolsscl 25385 . . . . . . 7 (((𝐴𝐵) ⊆ 𝐴𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → (vol*‘(𝐴𝐵)) ∈ ℝ)
3129, 19, 23, 30syl3anc 1373 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol*‘(𝐴𝐵)) ∈ ℝ)
3228, 31eqeltrd 2828 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴𝐵)) ∈ ℝ)
33 volun 25444 . . . . 5 ((((𝐴𝐵) ∈ dom vol ∧ (𝐴𝐵) ∈ dom vol ∧ ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅) ∧ ((vol‘(𝐴𝐵)) ∈ ℝ ∧ (vol‘(𝐴𝐵)) ∈ ℝ)) → (vol‘((𝐴𝐵) ∪ (𝐴𝐵))) = ((vol‘(𝐴𝐵)) + (vol‘(𝐴𝐵))))
344, 6, 13, 26, 32, 33syl32anc 1380 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘((𝐴𝐵) ∪ (𝐴𝐵))) = ((vol‘(𝐴𝐵)) + (vol‘(𝐴𝐵))))
352, 34eqtr3id 2778 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘𝐴) = ((vol‘(𝐴𝐵)) + (vol‘(𝐴𝐵))))
3635oveq1d 7364 . 2 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → ((vol‘𝐴) + (vol‘𝐵)) = (((vol‘(𝐴𝐵)) + (vol‘(𝐴𝐵))) + (vol‘𝐵)))
3726recnd 11143 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴𝐵)) ∈ ℂ)
3832recnd 11143 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴𝐵)) ∈ ℂ)
39 simprr 772 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘𝐵) ∈ ℝ)
4039recnd 11143 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘𝐵) ∈ ℂ)
4137, 38, 40addassd 11137 . 2 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (((vol‘(𝐴𝐵)) + (vol‘(𝐴𝐵))) + (vol‘𝐵)) = ((vol‘(𝐴𝐵)) + ((vol‘(𝐴𝐵)) + (vol‘𝐵))))
42 simplr 768 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → 𝐵 ∈ dom vol)
43 disjdifr 4424 . . . . . 6 ((𝐴𝐵) ∩ 𝐵) = ∅
4443a1i 11 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → ((𝐴𝐵) ∩ 𝐵) = ∅)
45 volun 25444 . . . . 5 ((((𝐴𝐵) ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ ((𝐴𝐵) ∩ 𝐵) = ∅) ∧ ((vol‘(𝐴𝐵)) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘((𝐴𝐵) ∪ 𝐵)) = ((vol‘(𝐴𝐵)) + (vol‘𝐵)))
466, 42, 44, 32, 39, 45syl32anc 1380 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘((𝐴𝐵) ∪ 𝐵)) = ((vol‘(𝐴𝐵)) + (vol‘𝐵)))
47 undif1 4427 . . . . 5 ((𝐴𝐵) ∪ 𝐵) = (𝐴𝐵)
4847fveq2i 6825 . . . 4 (vol‘((𝐴𝐵) ∪ 𝐵)) = (vol‘(𝐴𝐵))
4946, 48eqtr3di 2779 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → ((vol‘(𝐴𝐵)) + (vol‘𝐵)) = (vol‘(𝐴𝐵)))
5049oveq2d 7365 . 2 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → ((vol‘(𝐴𝐵)) + ((vol‘(𝐴𝐵)) + (vol‘𝐵))) = ((vol‘(𝐴𝐵)) + (vol‘(𝐴𝐵))))
5136, 41, 503eqtrd 2768 1 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → ((vol‘𝐴) + (vol‘𝐵)) = ((vol‘(𝐴𝐵)) + (vol‘(𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cdif 3900  cun 3901  cin 3902  wss 3903  c0 4284  dom cdm 5619  cfv 6482  (class class class)co 7349  cr 11008   + caddc 11012  vol*covol 25361  volcvol 25362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-ioo 13252  df-ico 13254  df-icc 13255  df-fz 13411  df-fl 13696  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-ovol 25363  df-vol 25364
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator