MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volinun Structured version   Visualization version   GIF version

Theorem volinun 24149
Description: Addition of non-disjoint sets. (Contributed by Mario Carneiro, 25-Mar-2015.)
Assertion
Ref Expression
volinun (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → ((vol‘𝐴) + (vol‘𝐵)) = ((vol‘(𝐴𝐵)) + (vol‘(𝐴𝐵))))

Proof of Theorem volinun
StepHypRef Expression
1 inundif 4429 . . . . 5 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
21fveq2i 6675 . . . 4 (vol‘((𝐴𝐵) ∪ (𝐴𝐵))) = (vol‘𝐴)
3 inmbl 24145 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴𝐵) ∈ dom vol)
43adantr 483 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (𝐴𝐵) ∈ dom vol)
5 difmbl 24146 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴𝐵) ∈ dom vol)
65adantr 483 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (𝐴𝐵) ∈ dom vol)
7 indifcom 4251 . . . . . . 7 ((𝐴𝐵) ∩ (𝐴𝐵)) = (𝐴 ∩ ((𝐴𝐵) ∖ 𝐵))
8 difin0 4424 . . . . . . . . 9 ((𝐴𝐵) ∖ 𝐵) = ∅
98ineq2i 4188 . . . . . . . 8 (𝐴 ∩ ((𝐴𝐵) ∖ 𝐵)) = (𝐴 ∩ ∅)
10 in0 4347 . . . . . . . 8 (𝐴 ∩ ∅) = ∅
119, 10eqtri 2846 . . . . . . 7 (𝐴 ∩ ((𝐴𝐵) ∖ 𝐵)) = ∅
127, 11eqtri 2846 . . . . . 6 ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅
1312a1i 11 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅)
14 mblvol 24133 . . . . . . 7 ((𝐴𝐵) ∈ dom vol → (vol‘(𝐴𝐵)) = (vol*‘(𝐴𝐵)))
154, 14syl 17 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴𝐵)) = (vol*‘(𝐴𝐵)))
16 inss1 4207 . . . . . . . 8 (𝐴𝐵) ⊆ 𝐴
1716a1i 11 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (𝐴𝐵) ⊆ 𝐴)
18 mblss 24134 . . . . . . . 8 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
1918ad2antrr 724 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → 𝐴 ⊆ ℝ)
20 mblvol 24133 . . . . . . . . 9 (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴))
2120ad2antrr 724 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘𝐴) = (vol*‘𝐴))
22 simprl 769 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘𝐴) ∈ ℝ)
2321, 22eqeltrrd 2916 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol*‘𝐴) ∈ ℝ)
24 ovolsscl 24089 . . . . . . 7 (((𝐴𝐵) ⊆ 𝐴𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → (vol*‘(𝐴𝐵)) ∈ ℝ)
2517, 19, 23, 24syl3anc 1367 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol*‘(𝐴𝐵)) ∈ ℝ)
2615, 25eqeltrd 2915 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴𝐵)) ∈ ℝ)
27 mblvol 24133 . . . . . . 7 ((𝐴𝐵) ∈ dom vol → (vol‘(𝐴𝐵)) = (vol*‘(𝐴𝐵)))
286, 27syl 17 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴𝐵)) = (vol*‘(𝐴𝐵)))
29 difssd 4111 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (𝐴𝐵) ⊆ 𝐴)
30 ovolsscl 24089 . . . . . . 7 (((𝐴𝐵) ⊆ 𝐴𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → (vol*‘(𝐴𝐵)) ∈ ℝ)
3129, 19, 23, 30syl3anc 1367 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol*‘(𝐴𝐵)) ∈ ℝ)
3228, 31eqeltrd 2915 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴𝐵)) ∈ ℝ)
33 volun 24148 . . . . 5 ((((𝐴𝐵) ∈ dom vol ∧ (𝐴𝐵) ∈ dom vol ∧ ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅) ∧ ((vol‘(𝐴𝐵)) ∈ ℝ ∧ (vol‘(𝐴𝐵)) ∈ ℝ)) → (vol‘((𝐴𝐵) ∪ (𝐴𝐵))) = ((vol‘(𝐴𝐵)) + (vol‘(𝐴𝐵))))
344, 6, 13, 26, 32, 33syl32anc 1374 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘((𝐴𝐵) ∪ (𝐴𝐵))) = ((vol‘(𝐴𝐵)) + (vol‘(𝐴𝐵))))
352, 34syl5eqr 2872 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘𝐴) = ((vol‘(𝐴𝐵)) + (vol‘(𝐴𝐵))))
3635oveq1d 7173 . 2 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → ((vol‘𝐴) + (vol‘𝐵)) = (((vol‘(𝐴𝐵)) + (vol‘(𝐴𝐵))) + (vol‘𝐵)))
3726recnd 10671 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴𝐵)) ∈ ℂ)
3832recnd 10671 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴𝐵)) ∈ ℂ)
39 simprr 771 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘𝐵) ∈ ℝ)
4039recnd 10671 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘𝐵) ∈ ℂ)
4137, 38, 40addassd 10665 . 2 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (((vol‘(𝐴𝐵)) + (vol‘(𝐴𝐵))) + (vol‘𝐵)) = ((vol‘(𝐴𝐵)) + ((vol‘(𝐴𝐵)) + (vol‘𝐵))))
42 undif1 4426 . . . . 5 ((𝐴𝐵) ∪ 𝐵) = (𝐴𝐵)
4342fveq2i 6675 . . . 4 (vol‘((𝐴𝐵) ∪ 𝐵)) = (vol‘(𝐴𝐵))
44 simplr 767 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → 𝐵 ∈ dom vol)
45 incom 4180 . . . . . . 7 ((𝐴𝐵) ∩ 𝐵) = (𝐵 ∩ (𝐴𝐵))
46 disjdif 4423 . . . . . . 7 (𝐵 ∩ (𝐴𝐵)) = ∅
4745, 46eqtri 2846 . . . . . 6 ((𝐴𝐵) ∩ 𝐵) = ∅
4847a1i 11 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → ((𝐴𝐵) ∩ 𝐵) = ∅)
49 volun 24148 . . . . 5 ((((𝐴𝐵) ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ ((𝐴𝐵) ∩ 𝐵) = ∅) ∧ ((vol‘(𝐴𝐵)) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘((𝐴𝐵) ∪ 𝐵)) = ((vol‘(𝐴𝐵)) + (vol‘𝐵)))
506, 44, 48, 32, 39, 49syl32anc 1374 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘((𝐴𝐵) ∪ 𝐵)) = ((vol‘(𝐴𝐵)) + (vol‘𝐵)))
5143, 50syl5reqr 2873 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → ((vol‘(𝐴𝐵)) + (vol‘𝐵)) = (vol‘(𝐴𝐵)))
5251oveq2d 7174 . 2 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → ((vol‘(𝐴𝐵)) + ((vol‘(𝐴𝐵)) + (vol‘𝐵))) = ((vol‘(𝐴𝐵)) + (vol‘(𝐴𝐵))))
5336, 41, 523eqtrd 2862 1 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → ((vol‘𝐴) + (vol‘𝐵)) = ((vol‘(𝐴𝐵)) + (vol‘(𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cdif 3935  cun 3936  cin 3937  wss 3938  c0 4293  dom cdm 5557  cfv 6357  (class class class)co 7158  cr 10538   + caddc 10542  vol*covol 24065  volcvol 24066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fl 13165  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-ovol 24067  df-vol 24068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator