MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volinun Structured version   Visualization version   GIF version

Theorem volinun 24141
Description: Addition of non-disjoint sets. (Contributed by Mario Carneiro, 25-Mar-2015.)
Assertion
Ref Expression
volinun (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → ((vol‘𝐴) + (vol‘𝐵)) = ((vol‘(𝐴𝐵)) + (vol‘(𝐴𝐵))))

Proof of Theorem volinun
StepHypRef Expression
1 inundif 4408 . . . . 5 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
21fveq2i 6656 . . . 4 (vol‘((𝐴𝐵) ∪ (𝐴𝐵))) = (vol‘𝐴)
3 inmbl 24137 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴𝐵) ∈ dom vol)
43adantr 484 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (𝐴𝐵) ∈ dom vol)
5 difmbl 24138 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴𝐵) ∈ dom vol)
65adantr 484 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (𝐴𝐵) ∈ dom vol)
7 indifcom 4232 . . . . . . 7 ((𝐴𝐵) ∩ (𝐴𝐵)) = (𝐴 ∩ ((𝐴𝐵) ∖ 𝐵))
8 difin0 4403 . . . . . . . . 9 ((𝐴𝐵) ∖ 𝐵) = ∅
98ineq2i 4169 . . . . . . . 8 (𝐴 ∩ ((𝐴𝐵) ∖ 𝐵)) = (𝐴 ∩ ∅)
10 in0 4326 . . . . . . . 8 (𝐴 ∩ ∅) = ∅
119, 10eqtri 2847 . . . . . . 7 (𝐴 ∩ ((𝐴𝐵) ∖ 𝐵)) = ∅
127, 11eqtri 2847 . . . . . 6 ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅
1312a1i 11 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅)
14 mblvol 24125 . . . . . . 7 ((𝐴𝐵) ∈ dom vol → (vol‘(𝐴𝐵)) = (vol*‘(𝐴𝐵)))
154, 14syl 17 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴𝐵)) = (vol*‘(𝐴𝐵)))
16 inss1 4188 . . . . . . . 8 (𝐴𝐵) ⊆ 𝐴
1716a1i 11 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (𝐴𝐵) ⊆ 𝐴)
18 mblss 24126 . . . . . . . 8 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
1918ad2antrr 725 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → 𝐴 ⊆ ℝ)
20 mblvol 24125 . . . . . . . . 9 (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴))
2120ad2antrr 725 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘𝐴) = (vol*‘𝐴))
22 simprl 770 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘𝐴) ∈ ℝ)
2321, 22eqeltrrd 2917 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol*‘𝐴) ∈ ℝ)
24 ovolsscl 24081 . . . . . . 7 (((𝐴𝐵) ⊆ 𝐴𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → (vol*‘(𝐴𝐵)) ∈ ℝ)
2517, 19, 23, 24syl3anc 1368 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol*‘(𝐴𝐵)) ∈ ℝ)
2615, 25eqeltrd 2916 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴𝐵)) ∈ ℝ)
27 mblvol 24125 . . . . . . 7 ((𝐴𝐵) ∈ dom vol → (vol‘(𝐴𝐵)) = (vol*‘(𝐴𝐵)))
286, 27syl 17 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴𝐵)) = (vol*‘(𝐴𝐵)))
29 difssd 4093 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (𝐴𝐵) ⊆ 𝐴)
30 ovolsscl 24081 . . . . . . 7 (((𝐴𝐵) ⊆ 𝐴𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → (vol*‘(𝐴𝐵)) ∈ ℝ)
3129, 19, 23, 30syl3anc 1368 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol*‘(𝐴𝐵)) ∈ ℝ)
3228, 31eqeltrd 2916 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴𝐵)) ∈ ℝ)
33 volun 24140 . . . . 5 ((((𝐴𝐵) ∈ dom vol ∧ (𝐴𝐵) ∈ dom vol ∧ ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅) ∧ ((vol‘(𝐴𝐵)) ∈ ℝ ∧ (vol‘(𝐴𝐵)) ∈ ℝ)) → (vol‘((𝐴𝐵) ∪ (𝐴𝐵))) = ((vol‘(𝐴𝐵)) + (vol‘(𝐴𝐵))))
344, 6, 13, 26, 32, 33syl32anc 1375 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘((𝐴𝐵) ∪ (𝐴𝐵))) = ((vol‘(𝐴𝐵)) + (vol‘(𝐴𝐵))))
352, 34syl5eqr 2873 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘𝐴) = ((vol‘(𝐴𝐵)) + (vol‘(𝐴𝐵))))
3635oveq1d 7155 . 2 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → ((vol‘𝐴) + (vol‘𝐵)) = (((vol‘(𝐴𝐵)) + (vol‘(𝐴𝐵))) + (vol‘𝐵)))
3726recnd 10656 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴𝐵)) ∈ ℂ)
3832recnd 10656 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴𝐵)) ∈ ℂ)
39 simprr 772 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘𝐵) ∈ ℝ)
4039recnd 10656 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘𝐵) ∈ ℂ)
4137, 38, 40addassd 10650 . 2 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (((vol‘(𝐴𝐵)) + (vol‘(𝐴𝐵))) + (vol‘𝐵)) = ((vol‘(𝐴𝐵)) + ((vol‘(𝐴𝐵)) + (vol‘𝐵))))
42 undif1 4405 . . . . 5 ((𝐴𝐵) ∪ 𝐵) = (𝐴𝐵)
4342fveq2i 6656 . . . 4 (vol‘((𝐴𝐵) ∪ 𝐵)) = (vol‘(𝐴𝐵))
44 simplr 768 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → 𝐵 ∈ dom vol)
45 incom 4161 . . . . . . 7 ((𝐴𝐵) ∩ 𝐵) = (𝐵 ∩ (𝐴𝐵))
46 disjdif 4402 . . . . . . 7 (𝐵 ∩ (𝐴𝐵)) = ∅
4745, 46eqtri 2847 . . . . . 6 ((𝐴𝐵) ∩ 𝐵) = ∅
4847a1i 11 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → ((𝐴𝐵) ∩ 𝐵) = ∅)
49 volun 24140 . . . . 5 ((((𝐴𝐵) ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ ((𝐴𝐵) ∩ 𝐵) = ∅) ∧ ((vol‘(𝐴𝐵)) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘((𝐴𝐵) ∪ 𝐵)) = ((vol‘(𝐴𝐵)) + (vol‘𝐵)))
506, 44, 48, 32, 39, 49syl32anc 1375 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘((𝐴𝐵) ∪ 𝐵)) = ((vol‘(𝐴𝐵)) + (vol‘𝐵)))
5143, 50syl5reqr 2874 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → ((vol‘(𝐴𝐵)) + (vol‘𝐵)) = (vol‘(𝐴𝐵)))
5251oveq2d 7156 . 2 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → ((vol‘(𝐴𝐵)) + ((vol‘(𝐴𝐵)) + (vol‘𝐵))) = ((vol‘(𝐴𝐵)) + (vol‘(𝐴𝐵))))
5336, 41, 523eqtrd 2863 1 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → ((vol‘𝐴) + (vol‘𝐵)) = ((vol‘(𝐴𝐵)) + (vol‘(𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  cdif 3915  cun 3916  cin 3917  wss 3918  c0 4274  dom cdm 5538  cfv 6338  (class class class)co 7140  cr 10523   + caddc 10527  vol*covol 24057  volcvol 24058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5186  ax-nul 5193  ax-pow 5249  ax-pr 5313  ax-un 7446  ax-cnex 10580  ax-resscn 10581  ax-1cn 10582  ax-icn 10583  ax-addcl 10584  ax-addrcl 10585  ax-mulcl 10586  ax-mulrcl 10587  ax-mulcom 10588  ax-addass 10589  ax-mulass 10590  ax-distr 10591  ax-i2m1 10592  ax-1ne0 10593  ax-1rid 10594  ax-rnegex 10595  ax-rrecex 10596  ax-cnre 10597  ax-pre-lttri 10598  ax-pre-lttrn 10599  ax-pre-ltadd 10600  ax-pre-mulgt0 10601  ax-pre-sup 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4822  df-iun 4904  df-br 5050  df-opab 5112  df-mpt 5130  df-tr 5156  df-id 5443  df-eprel 5448  df-po 5457  df-so 5458  df-fr 5497  df-we 5499  df-xp 5544  df-rel 5545  df-cnv 5546  df-co 5547  df-dm 5548  df-rn 5549  df-res 5550  df-ima 5551  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6297  df-fun 6340  df-fn 6341  df-f 6342  df-f1 6343  df-fo 6344  df-f1o 6345  df-fv 6346  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7674  df-2nd 7675  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-er 8274  df-map 8393  df-en 8495  df-dom 8496  df-sdom 8497  df-sup 8892  df-inf 8893  df-pnf 10664  df-mnf 10665  df-xr 10666  df-ltxr 10667  df-le 10668  df-sub 10859  df-neg 10860  df-div 11285  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fl 13157  df-seq 13365  df-exp 13426  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-ovol 24059  df-vol 24060
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator