| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difrab0eq | Structured version Visualization version GIF version | ||
| Description: If the difference between the restricting class of a restricted class abstraction and the restricted class abstraction is empty, the restricting class is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.) |
| Ref | Expression |
|---|---|
| difrab0eq | ⊢ ((𝑉 ∖ {𝑥 ∈ 𝑉 ∣ 𝜑}) = ∅ ↔ 𝑉 = {𝑥 ∈ 𝑉 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdif0 4346 | . 2 ⊢ (𝑉 ⊆ {𝑥 ∈ 𝑉 ∣ 𝜑} ↔ (𝑉 ∖ {𝑥 ∈ 𝑉 ∣ 𝜑}) = ∅) | |
| 2 | ssrabeq 4064 | . 2 ⊢ (𝑉 ⊆ {𝑥 ∈ 𝑉 ∣ 𝜑} ↔ 𝑉 = {𝑥 ∈ 𝑉 ∣ 𝜑}) | |
| 3 | 1, 2 | bitr3i 277 | 1 ⊢ ((𝑉 ∖ {𝑥 ∈ 𝑉 ∣ 𝜑}) = ∅ ↔ 𝑉 = {𝑥 ∈ 𝑉 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 {crab 3420 ∖ cdif 3928 ⊆ wss 3931 ∅c0 4313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-ss 3948 df-nul 4314 |
| This theorem is referenced by: frgrregorufr0 30310 |
| Copyright terms: Public domain | W3C validator |