|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > difrab0eq | Structured version Visualization version GIF version | ||
| Description: If the difference between the restricting class of a restricted class abstraction and the restricted class abstraction is empty, the restricting class is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.) | 
| Ref | Expression | 
|---|---|
| difrab0eq | ⊢ ((𝑉 ∖ {𝑥 ∈ 𝑉 ∣ 𝜑}) = ∅ ↔ 𝑉 = {𝑥 ∈ 𝑉 ∣ 𝜑}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssdif0 4366 | . 2 ⊢ (𝑉 ⊆ {𝑥 ∈ 𝑉 ∣ 𝜑} ↔ (𝑉 ∖ {𝑥 ∈ 𝑉 ∣ 𝜑}) = ∅) | |
| 2 | ssrabeq 4084 | . 2 ⊢ (𝑉 ⊆ {𝑥 ∈ 𝑉 ∣ 𝜑} ↔ 𝑉 = {𝑥 ∈ 𝑉 ∣ 𝜑}) | |
| 3 | 1, 2 | bitr3i 277 | 1 ⊢ ((𝑉 ∖ {𝑥 ∈ 𝑉 ∣ 𝜑}) = ∅ ↔ 𝑉 = {𝑥 ∈ 𝑉 ∣ 𝜑}) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 = wceq 1540 {crab 3436 ∖ cdif 3948 ⊆ wss 3951 ∅c0 4333 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-ss 3968 df-nul 4334 | 
| This theorem is referenced by: frgrregorufr0 30343 | 
| Copyright terms: Public domain | W3C validator |