| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difrab0eq | Structured version Visualization version GIF version | ||
| Description: If the difference between the restricting class of a restricted class abstraction and the restricted class abstraction is empty, the restricting class is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.) |
| Ref | Expression |
|---|---|
| difrab0eq | ⊢ ((𝑉 ∖ {𝑥 ∈ 𝑉 ∣ 𝜑}) = ∅ ↔ 𝑉 = {𝑥 ∈ 𝑉 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdif0 4313 | . 2 ⊢ (𝑉 ⊆ {𝑥 ∈ 𝑉 ∣ 𝜑} ↔ (𝑉 ∖ {𝑥 ∈ 𝑉 ∣ 𝜑}) = ∅) | |
| 2 | ssrabeq 4031 | . 2 ⊢ (𝑉 ⊆ {𝑥 ∈ 𝑉 ∣ 𝜑} ↔ 𝑉 = {𝑥 ∈ 𝑉 ∣ 𝜑}) | |
| 3 | 1, 2 | bitr3i 277 | 1 ⊢ ((𝑉 ∖ {𝑥 ∈ 𝑉 ∣ 𝜑}) = ∅ ↔ 𝑉 = {𝑥 ∈ 𝑉 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 {crab 3395 ∖ cdif 3894 ⊆ wss 3897 ∅c0 4280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-ss 3914 df-nul 4281 |
| This theorem is referenced by: frgrregorufr0 30304 |
| Copyright terms: Public domain | W3C validator |