MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difrab0eq Structured version   Visualization version   GIF version

Theorem difrab0eq 4370
Description: If the difference between the restricting class of a restricted class abstraction and the restricted class abstraction is empty, the restricting class is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.)
Assertion
Ref Expression
difrab0eq ((𝑉 ∖ {𝑥𝑉𝜑}) = ∅ ↔ 𝑉 = {𝑥𝑉𝜑})
Distinct variable group:   𝑥,𝑉
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem difrab0eq
StepHypRef Expression
1 ssdif0 4264 . 2 (𝑉 ⊆ {𝑥𝑉𝜑} ↔ (𝑉 ∖ {𝑥𝑉𝜑}) = ∅)
2 ssrabeq 3983 . 2 (𝑉 ⊆ {𝑥𝑉𝜑} ↔ 𝑉 = {𝑥𝑉𝜑})
31, 2bitr3i 280 1 ((𝑉 ∖ {𝑥𝑉𝜑}) = ∅ ↔ 𝑉 = {𝑥𝑉𝜑})
Colors of variables: wff setvar class
Syntax hints:  wb 209   = wceq 1543  {crab 3055  cdif 3850  wss 3853  c0 4223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-rab 3060  df-v 3400  df-dif 3856  df-in 3860  df-ss 3870  df-nul 4224
This theorem is referenced by:  frgrregorufr0  28361
  Copyright terms: Public domain W3C validator