Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  difrab0eq Structured version   Visualization version   GIF version

Theorem difrab0eq 4380
 Description: If the difference between the restricting class of a restricted class abstraction and the restricted class abstraction is empty, the restricting class is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.)
Assertion
Ref Expression
difrab0eq ((𝑉 ∖ {𝑥𝑉𝜑}) = ∅ ↔ 𝑉 = {𝑥𝑉𝜑})
Distinct variable group:   𝑥,𝑉
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem difrab0eq
StepHypRef Expression
1 ssdif0 4280 . 2 (𝑉 ⊆ {𝑥𝑉𝜑} ↔ (𝑉 ∖ {𝑥𝑉𝜑}) = ∅)
2 ssrabeq 4013 . 2 (𝑉 ⊆ {𝑥𝑉𝜑} ↔ 𝑉 = {𝑥𝑉𝜑})
31, 2bitr3i 280 1 ((𝑉 ∖ {𝑥𝑉𝜑}) = ∅ ↔ 𝑉 = {𝑥𝑉𝜑})
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   = wceq 1538  {crab 3113   ∖ cdif 3881   ⊆ wss 3884  ∅c0 4246 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-ext 2773 This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-rab 3118  df-v 3446  df-dif 3887  df-in 3891  df-ss 3901  df-nul 4247 This theorem is referenced by:  frgrregorufr0  28113
 Copyright terms: Public domain W3C validator