![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vdif0 | Structured version Visualization version GIF version |
Description: Universal class equality in terms of empty difference. (Contributed by NM, 17-Sep-2003.) |
Ref | Expression |
---|---|
vdif0 | ⊢ (𝐴 = V ↔ (V ∖ 𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vss 4469 | . 2 ⊢ (V ⊆ 𝐴 ↔ 𝐴 = V) | |
2 | ssdif0 4389 | . 2 ⊢ (V ⊆ 𝐴 ↔ (V ∖ 𝐴) = ∅) | |
3 | 1, 2 | bitr3i 277 | 1 ⊢ (𝐴 = V ↔ (V ∖ 𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 Vcvv 3488 ∖ cdif 3973 ⊆ wss 3976 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-ss 3993 df-nul 4353 |
This theorem is referenced by: setind 9803 |
Copyright terms: Public domain | W3C validator |