MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdif0 Structured version   Visualization version   GIF version

Theorem vdif0 4461
Description: Universal class equality in terms of empty difference. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
vdif0 (𝐴 = V ↔ (V ∖ 𝐴) = ∅)

Proof of Theorem vdif0
StepHypRef Expression
1 vss 4436 . 2 (V ⊆ 𝐴𝐴 = V)
2 ssdif0 4356 . 2 (V ⊆ 𝐴 ↔ (V ∖ 𝐴) = ∅)
31, 2bitr3i 277 1 (𝐴 = V ↔ (V ∖ 𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1533  Vcvv 3466  cdif 3938  wss 3941  c0 4315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-v 3468  df-dif 3944  df-in 3948  df-ss 3958  df-nul 4316
This theorem is referenced by:  setind  9726
  Copyright terms: Public domain W3C validator