![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vdif0 | Structured version Visualization version GIF version |
Description: Universal class equality in terms of empty difference. (Contributed by NM, 17-Sep-2003.) |
Ref | Expression |
---|---|
vdif0 | ⊢ (𝐴 = V ↔ (V ∖ 𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vss 4436 | . 2 ⊢ (V ⊆ 𝐴 ↔ 𝐴 = V) | |
2 | ssdif0 4356 | . 2 ⊢ (V ⊆ 𝐴 ↔ (V ∖ 𝐴) = ∅) | |
3 | 1, 2 | bitr3i 277 | 1 ⊢ (𝐴 = V ↔ (V ∖ 𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1533 Vcvv 3466 ∖ cdif 3938 ⊆ wss 3941 ∅c0 4315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-dif 3944 df-in 3948 df-ss 3958 df-nul 4316 |
This theorem is referenced by: setind 9726 |
Copyright terms: Public domain | W3C validator |