MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdif0 Structured version   Visualization version   GIF version

Theorem vdif0 4476
Description: Universal class equality in terms of empty difference. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
vdif0 (𝐴 = V ↔ (V ∖ 𝐴) = ∅)

Proof of Theorem vdif0
StepHypRef Expression
1 vss 4453 . 2 (V ⊆ 𝐴𝐴 = V)
2 ssdif0 4373 . 2 (V ⊆ 𝐴 ↔ (V ∖ 𝐴) = ∅)
31, 2bitr3i 277 1 (𝐴 = V ↔ (V ∖ 𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1538  Vcvv 3479  cdif 3961  wss 3964  c0 4340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1541  df-fal 1551  df-ex 1778  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-v 3481  df-dif 3967  df-ss 3981  df-nul 4341
This theorem is referenced by:  setind  9778
  Copyright terms: Public domain W3C validator