| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vdif0 | Structured version Visualization version GIF version | ||
| Description: Universal class equality in terms of empty difference. (Contributed by NM, 17-Sep-2003.) |
| Ref | Expression |
|---|---|
| vdif0 | ⊢ (𝐴 = V ↔ (V ∖ 𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vss 4411 | . 2 ⊢ (V ⊆ 𝐴 ↔ 𝐴 = V) | |
| 2 | ssdif0 4331 | . 2 ⊢ (V ⊆ 𝐴 ↔ (V ∖ 𝐴) = ∅) | |
| 3 | 1, 2 | bitr3i 277 | 1 ⊢ (𝐴 = V ↔ (V ∖ 𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 Vcvv 3450 ∖ cdif 3913 ⊆ wss 3916 ∅c0 4298 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3919 df-ss 3933 df-nul 4299 |
| This theorem is referenced by: setind 9693 |
| Copyright terms: Public domain | W3C validator |