| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vdif0 | Structured version Visualization version GIF version | ||
| Description: Universal class equality in terms of empty difference. (Contributed by NM, 17-Sep-2003.) |
| Ref | Expression |
|---|---|
| vdif0 | ⊢ (𝐴 = V ↔ (V ∖ 𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vss 4428 | . 2 ⊢ (V ⊆ 𝐴 ↔ 𝐴 = V) | |
| 2 | ssdif0 4348 | . 2 ⊢ (V ⊆ 𝐴 ↔ (V ∖ 𝐴) = ∅) | |
| 3 | 1, 2 | bitr3i 277 | 1 ⊢ (𝐴 = V ↔ (V ∖ 𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 Vcvv 3464 ∖ cdif 3930 ⊆ wss 3933 ∅c0 4315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3466 df-dif 3936 df-ss 3950 df-nul 4316 |
| This theorem is referenced by: setind 9757 |
| Copyright terms: Public domain | W3C validator |